The scaling limit of critical random graphs

Christina Goldschmidt
(University of Warwick)

Joint work with Louigi Addario-Berry (McGill University) and Nicolas Broutin (INRIA Rocquencourt)
The Erdős-Rényi random graph

Take n vertices labelled by $[n] := \{1, 2, \ldots, n\}$ and put an edge between any pair independently with probability p. Call the resulting model $G(n, p)$.

Example: $n = 10$, $p = 0.4$ (vertex labels omitted).
The phase transition

Let $p = c/n$ and consider the largest component (vertices in green, edges in red).

$n = 200, \ c = 0.4$
The phase transition

Let $p = c/n$ and consider the largest component (vertices in green, edges in red).

$n = 200, \ c = 0.8$
The phase transition

Let $p = c/n$ and consider the largest component (vertices in green, edges in red).

$n = 200, \ c = 1.2$
The phase transition (Erdős and Rényi (1960))

Consider \(p = c/n \).

- For \(c < 1 \), the largest connected component has size \(O(\log n) \);
- for \(c > 1 \), the largest connected component has size \(\Theta(n) \) (and the others are all \(O(\log n) \)).
The critical random graph

The critical window: \(p = \frac{1}{n} + \frac{\lambda}{n^{4/3}} \), where \(\lambda \in \mathbb{R} \). For such \(p \), the largest components have size \(\Theta(n^{2/3}) \).
The critical random graph

The critical window: $p = \frac{1}{n} + \frac{\lambda}{n^{4/3}}$, where $\lambda \in \mathbb{R}$. For such p, the largest components have size $\Theta(n^{2/3})$.

We will also be interested in the surplus of a component, the number of edges more than a tree that it has.

A component with surplus 3:
Convergence of the sizes and surpluses

Fix λ and let C^n_1, C^n_2, \ldots be the sequence of component sizes in decreasing order, and let S^n_1, S^n_2, \ldots be their surpluses.

Write $C^n = (C^n_1, C^n_2, \ldots)$ and $S^n = (S^n_1, S^n_2, \ldots)$.
Convergence of the sizes and surpluses

Fix \(\lambda \) and let \(C_1^n, C_2^n, \ldots \) be the sequence of component sizes in decreasing order, and let \(S_1^n, S_2^n, \ldots \) be their surpluses.

Write \(C^n = (C_1^n, C_2^n, \ldots) \) and \(S^n = (S_1^n, S_2^n, \ldots) \).

Theorem. (Aldous (1997)) As \(n \to \infty \),

\[
(n^{-2/3} C^n, S^n) \xrightarrow{d} (C, S).
\]
Convergence of the sizes and surpluses

Fix λ and let C_1^n, C_2^n, \ldots be the sequence of component sizes in decreasing order, and let S_1^n, S_2^n, \ldots be their surpluses.

Write $C^n = (C_1^n, C_2^n, \ldots)$ and $S^n = (S_1^n, S_2^n, \ldots)$.

Theorem. (Aldous (1997)) As $n \to \infty$,

$$(n^{-2/3}C^n, S^n) \overset{d}{\to} (C, S).$$

Here, convergence in the first co-ordinate takes place in ℓ_2^\downarrow:

$$\ell_2^\downarrow := \left\{ x = (x_1, x_2, \ldots) : x_1 \geq x_2 \geq \ldots \geq 0, \sum_{i=1}^{\infty} x_i^2 < \infty \right\}.$$
Limiting sizes and surpluses

Let $W^\lambda(t) = W(t) + \lambda t - \frac{t^2}{2}$, $t \geq 0$, where $(W(t), t \geq 0)$ is a standard Brownian motion.
Limiting sizes and surpluses

Let $W^\lambda(t) = W(t) + \lambda t - \frac{t^2}{2}$, $t \geq 0$, where $(W(t), t \geq 0)$ is a standard Brownian motion.
Limiting sizes and surpluses

Let $W^\lambda(t) = W(t) + \lambda t - \frac{t^2}{2}$, $t \geq 0$, where $(W(t), t \geq 0)$ is a standard Brownian motion.

Let $B^\lambda(t) = W^\lambda(t) - \min_{0 \leq s \leq t} W^\lambda(s)$ be the process reflected at its minimum.
Limiting sizes and surpluses

Let $W^\lambda(t) = W(t) + \lambda t - \frac{t^2}{2}$, $t \geq 0$, where $(W(t), t \geq 0)$ is a standard Brownian motion.

Let $B^\lambda(t) = W^\lambda(t) - \min_{0 \leq s \leq t} W^\lambda(s)$ be the process reflected at its minimum.
Decorate the picture with the points of a rate one Poisson process which fall above the x-axis and below the graph.

C is the sequence of excursion-lengths of this process, in decreasing order.

S is the sequence of numbers of points falling in the corresponding excursions.
What do the limiting components look like?
Question

What do the limiting components look like?

The vertex-labels are irrelevant: we are really interested in what distances look like in the limit. So we will give a metric space answer.
Measuring the distance between metric spaces

The Hausdorff distance between two compact subsets K and K' of a metric space (M, δ) is

$$d_H(K, K') = \inf\{\epsilon > 0 : K \subseteq F_{\epsilon}(K'), K' \subseteq F_{\epsilon}(K)\},$$

where $F_{\epsilon}(K) := \{x \in M : \delta(x, K) \leq \epsilon\}$ is the ϵ-fattening of K.
Measuring the distance between metric spaces

To measure the distance between two compact metric spaces (X, d) and (X', d'), the idea is to embed them (isometrically) into a single larger metric space and then compare them using the Hausdorff distance.
Measuring the distance between metric spaces

To measure the distance between two compact metric spaces (X, d) and (X', d'), the idea is to embed them (isometrically) into a single larger metric space and then compare them using the Hausdorff distance.

So define the Gromov-Hausdorff distance

$$d_{GH}(X, X') = \inf \{ d_H(\phi(X), \phi'(X')) \}$$

where the infimum is taken over all choices of metric space (M, δ) and all isometric embeddings $\phi : X \to M$, $\phi' : X' \to M$.
Our approach

Simple but important fact: a component of $G(n, p)$ conditioned to have m vertices and s surplus edges is a uniform connected graph on those m vertices with $m + s - 1$ edges.
Our approach

Simple but important fact: a component of $G(n, p)$ conditioned to have m vertices and s surplus edges is a uniform connected graph on those m vertices with $m + s - 1$ edges.

Our general approach is to pick out a (well-chosen) spanning tree, and then to put in the surplus edges.
Our approach

Simple but important fact: a component of $G(n, p)$ conditioned to have m vertices and s surplus edges is a uniform connected graph on those m vertices with $m + s - 1$ edges.

Our general approach is to pick out a (well-chosen) spanning tree, and then to put in the surplus edges.

There is one case which we already understand very well: when the surplus of a component is 0 and so we have a uniform random tree.
Warm-up: the tree case

Take a uniform random tree T_m on vertices labelled by $[m] = \{1, 2, \ldots, m\}$ and, using the ordinary graph distance, think of it as a metric space.
Warm-up: the tree case

Take a uniform random tree T_m on vertices labelled by $[m] = \{1, 2, \ldots, m\}$ and, using the ordinary graph distance, think of it as a metric space.

Now rescale the edge-lengths by $1/\sqrt{m}$:
Warm-up: the tree case

Theorem. (Aldous (1993), Le Gall (2005)) As $m \to \infty$,

$$\frac{1}{\sqrt{m}} T_m \xrightarrow{d} \mathcal{T},$$

where the convergence is in the Gromov-Hausdorff distance.

The limit \mathcal{T} is the **Brownian continuum random tree**.
The Brownian continuum random tree

[Picture by Grégory Miermont]
Trees from excursions

Let \(h : [0, 1] \to \mathbb{R}^+ \) be an excursion, that is a continuous function such that \(h(0) = h(1) = 0 \) and \(h(x) > 0 \) for \(x \in (0, 1) \).
Trees from excursions

Define a distance d on $[0, 1]$ via

$$d(x, y) = h(x) + h(y) - 2 \inf_{x \land y \leq z \leq x \lor y} h(z).$$
Define an equivalence relation \sim by $x \sim y$ if $d(x, y) = 0$ and take the quotient $T = [0, 1]/\sim$.

The Brownian continuum random tree is T with $h(x) = 2e(x)$ and $(e(x), 0 \leq x \leq 1)$ a standard Brownian excursion.
Define an equivalence relation \sim by $x \sim y$ if $d(x, y) = 0$ and take the quotient $T_h = [0, 1]/\sim$.
Define an equivalence relation \sim by $x \sim y$ if $d(x, y) = 0$ and take the quotient $\mathcal{T}_h = [0, 1]/\sim$.

The Brownian continuum random tree is \mathcal{T}_h with $h(x) = 2e(x)$ and $(e(x), 0 \leq x \leq 1)$ a standard Brownian excursion.
The limit of the random graph

In the tree case, we rescaled distances by $1/\sqrt{m}$, where m was the number of vertices. This is the correct distance rescaling for all of the big components in the random graph.
The limit of the random graph

In the tree case, we rescaled distances by $1/\sqrt{m}$, where m was the number of vertices. This is the correct distance rescaling for all of the big components in the random graph. Since the big components have sizes of order $n^{2/3}$, we should rescale distances by $n^{-1/3}$.

The limit of the random graph

In the tree case, we rescaled distances by $1/\sqrt{m}$, where m was the number of vertices. This is the correct distance rescaling for all of the big components in the random graph. Since the big components have sizes of order $n^{2/3}$, we should rescale distances by $n^{-1/3}$.

Each excursion of the process $(B^\lambda(t), t \geq 0)$ encodes a continuum random tree, which is a “spanning tree” for a limit component.
The limit of the random graph

In the tree case, we rescaled distances by $1/\sqrt{m}$, where m was the number of vertices. This is the correct distance rescaling for all of the big components in the random graph. Since the big components have sizes of order $n^{2/3}$, we should rescale distances by $n^{-1/3}$.

Each excursion of the process $(B^\lambda(t), t \geq 0)$ encodes a continuum random tree, which is a “spanning tree” for a limit component. These are not rescaled Brownian CRT’s, but CRT’s whose distribution has been “tilted” in a way which we will make precise in a moment.
The limit of the random graph

In the tree case, we rescaled distances by $1/\sqrt{m}$, where m was the number of vertices. This is the correct distance rescaling for all of the big components in the random graph. Since the big components have sizes of order $n^{2/3}$, we should rescale distances by $n^{-1/3}$.

Each excursion of the process $(B^\lambda(t), t \geq 0)$ encodes a continuum random tree, which is a “spanning tree” for a limit component. These are not rescaled Brownian CRT’s, but CRT’s whose distribution has been “tilted” in a way which we will make precise in a moment.

In the limit, surplus edges correspond to vertex-identifications (since edge-lengths have shrunk to 0). In each excursion, the points of the Poisson process tell us where these vertex-identifications should occur.
Excursions of the limit process

Consider the process \((B^\lambda(t), t \geq 0)\). An excursion \(\tilde{e}(x)\) of this process, conditioned to have length \(x\), has a distribution specified by

\[
\mathbb{E} \left[f \left(\tilde{e}(x) \right) \right] = \frac{\mathbb{E} \left[f \left(e(x) \right) \exp \left(\int_0^x e(x)(u) \, du \right) \right]}{\mathbb{E} \left[\exp \left(\int_0^x e(x)(u) \, du \right) \right]},
\]

where \(f\) is any suitable test-function and \(e(x)\) is a Brownian excursion of length \(x\).
Excursions of the limit process

Consider the process \((B^\lambda(t), t \geq 0) \). An excursion \(\tilde{e}^{(x)} \) of this process, conditioned to have length \(x \), has a distribution specified by

\[
\mathbb{E} \left[f \left(\tilde{e}^{(x)} \right) \right] = \frac{\mathbb{E} \left[f \left(e^{(x)} \right) \exp \left(\int_0^x e^{(x)}(u)du \right) \right]}{\mathbb{E} \left[\exp \left(\int_0^x e^{(x)}(u)du \right) \right]},
\]

where \(f \) is any suitable test-function and \(e^{(x)} \) is a Brownian excursion of length \(x \).

We refer to \(\tilde{e}^{(x)} \) as a tilted excursion and to the tree \(\tilde{T} \) that it encodes as a tilted tree.
A point at \((x, y)\) identifies the vertex \(v\) at height \(h(x)\) with the vertex at distance \(y\) along the path from the root to \(v\).
A limiting component

Note that it follows from properties of the tilted trees and of the Poisson process that we may equivalently describe the limit of a component on $\sim xn^{2/3}$ vertices as follows.
A limiting component

Sample a tilted excursion $\tilde{e}^{(x)}$ of length x and use it to create a CRT \tilde{T}.

Conditional on $\tilde{e}^{(x)}$, sample a random variable P with Poisson distribution $\int_{0}^{x} \tilde{e}^{(x)}(u) du$.

\[\text{Sample a tilted excursion } \tilde{e}^{(x)} \text{ of length } x \text{ and use it to create a CRT } \tilde{T}. \]
A limiting component

Sample a tilted excursion $\tilde{e}(x)$ of length x and use it to create a CRT \tilde{T}.

Conditional on $\tilde{e}(x)$, sample a random variable P with Poisson $\left(\int_0^x \tilde{e}(x)(u)du\right)$ distribution.
A limiting component

Conditional on $P = s$, pick s vertices of the tree \tilde{T} independently with density proportional to their height. (These will almost surely be leaves.)
A limiting component

For each of the selected leaves, pick a uniform point on the path from the leaf to the root.
A limiting component

Identify each of the selected leaves with its chosen point.
Convergence result

Let C_1^n, C_2^n, \ldots be the sequence of components of $G(n, p)$ in decreasing order of size, considered as metric spaces with the graph distance.

Theorem. As $n \to \infty$,

$$n^{-1/3} (C_1^n, C_2^n, \ldots) \xrightarrow{d} (C_1, C_2, \ldots),$$

where C_1, C_2, \ldots is the sequence of metric spaces corresponding to the excursions of Aldous’ marked limit process in decreasing order of length.

Here, convergence is with respect to the metric

$$d(\mathcal{A}, \mathcal{B}) := \left(\sum_{i=1}^{\infty} d_{GH}(\mathcal{A}_i, \mathcal{B}_i)^4 \right)^{1/4}.$$
Let D_n be the diameter of $G(n, p)$ for p in the critical window, that is the largest distance between a pair of vertices lying in the same component of the graph.

Nachmias and Peres (2008) showed that $D_n = \Theta(n^{1/3})$. (Also follows from results of Addario-Berry, Broutin and Reed.)

Our convergence result allows us to prove that

$$n^{-1/3} D_n \xrightarrow{d} D$$

as $n \to \infty$, where D is an absolutely continuous random variable with finite mean.
Idea of proof

The key idea turns out to be study a component of $G(n, p)$ conditioned on its size but not on its surplus.
Idea of proof

The key idea turns out to be study a component of $G(n, p)$ conditioned on its size but not on its surplus.

We will begin by taking an arbitrary connected graph G and picking out a particular spanning tree via a depth-first exploration.

We explore the graph step-by-step. At each step, the vertices may be in one of four states: unexplored, current, alive or dead.
Idea of proof

The key idea turns out to be study a component of $G(n, p)$ conditioned on its size but *not* on its surplus.

We will begin by taking an arbitrary connected graph G and picking out a particular spanning tree via a depth-first exploration.

We explore the graph step-by-step. At each step, the vertices may be in one of four states: unexplored, *current*, *alive* or *dead*.

Let $X(k)$ be the number of vertices alive at step k.
Depth-first exploration

Step 0: initialization

Current: 1 Alive: none Dead: none $X(0) = 0$.
Depth-first exploration

Step 1

Current: 5 Alive: 7, 10 Dead: 1 X(1) = 2.
Depth-first exploration

Step 2

Current: 2 Alive: 9, 7, 10 Dead: 1, 5 \(X(2) = 3 \).
Depth-first exploration

Step 3

Current: 3 Alive: 9, 7, 10 Dead: 1, 5, 2 $X(3) = 3$.
Depth-first exploration

Step 4

Current: 9 Alive: 7, 10 Dead: 1, 5, 2, 3 $X(4) = 2$.
Depth-first exploration

Step 5

Current: 7 Alive: 10 Dead: 1, 5, 2, 3, 9 $X(5) = 1$.
Depth-first exploration

Step 6

Current: 10 Alive: none Dead: 1, 5, 2, 3, 9, 7 $X(6) = 0.$
Depth-first exploration

Step 7

Current: 8 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10 \(X(7) = 0 \).
Depth-first exploration

Step 8

Current: 4 Alive: 6 Dead: 1, 5, 2, 3, 9, 7, 10, 8 \(X(8) = 1\).
Depth-first exploration

Step 9

Current: 6 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10, 8, 4
$X(9) = 0.$
Depth-first walk

\[X(k) = \text{the number of vertices alive at the } k\text{th step of the depth-first exploration.} \]
Depth-first tree

We essentially explored this tree; the dashed edges made no difference to the depth-first exploration.

Call it the depth-first tree associated with the graph G, and write $T(G)$.
Permitted edges

For a given tree T, which connected graphs have depth-first tree T? In other words, where can we put surplus edges so that they don’t change T?

Call such edges permitted.
Step 0: \(X(0) = 0. \)
Depth-first walk and permitted edges

Step 1: $X(1) = 2$.
Depth-first walk and permitted edges

Step 2: $X(2) = 3$.

![Graph with nodes and edges](image-url)
Depth-first walk and permitted edges

Step 3: \(X(3) = 3. \)
Step 4: $X(4) = 2$.
Step 5: \(X(5) = 1 \).
Step 6: $X(6) = 0$.
Step 7: $X(7) = 0$.
Step 8: $X(8) = 1$.
Depth-first walk and permitted edges

Step 10: $X(9) = 0$.
At step $k \geq 0$ there are $X(k)$ permitted edges. So the total number is

$$a(T) = \sum_{k=0}^{m-1} X(k).$$

We call this the area of T.

![Area Graph]

Area
Classifying graphs by depth-first tree

Let \mathcal{G}_T be the set of graphs G such that $T(G) = T$. It follows that $|\mathcal{G}_T| = 2^{a(T)}$.
Classifying graphs by depth-first tree

Let G_T be the set of graphs G such that $T(G) = T$. It follows that $|G_T| = 2^{a(T)}$.

Let $T[m]$ be the set of trees with label-set $[m] = \{1, 2, \ldots, m\}$. Then

$$\{G_T : T \in T[m]\}$$

is a partition of the set of connected graphs on $[m]$.
Recipe for creating a connected graph on \([m]\)

Create a connected graph \(\tilde{G}_m^p\) as follows.

\[\text{Pick a random labelled tree } \tilde{T}_m \text{ such that } P(\tilde{T}_m = T) \propto (1 - p)^{-a(T)}, T \in T_m.\]

\[\text{Add each of the } a(\tilde{T}_m^p) \text{ permitted edges to } \tilde{T}_m \text{ independently with probability } p.\]
Recipe for creating a connected graph on $[m]$.

Create a connected graph \tilde{G}_m^p as follows.

1. Pick a random labelled tree \tilde{T}_m^p such that

 \[\mathbb{P} \left(\tilde{T}_m^p = T \right) \propto (1 - p)^{-a(T)}, \quad T \in \mathbb{T}_[m]. \]

 where $\mathbb{T}_[m]$ is the set of all labelled trees on $[m]$. The proportionality constant ensures that the probabilities sum to 1.
Recipe for creating a connected graph on $[m]$

Create a connected graph \tilde{G}_m^p as follows.

- Pick a random labelled tree \tilde{T}_m^p such that
 \[P\left(\tilde{T}_m^p = T \right) \propto (1 - p)^{-a(T)}, \quad T \in \mathbb{T}_{[m]} \].

- Add each of the $a(\tilde{T}_m^p)$ permitted edges to \tilde{T}_m^p independently with probability p.
Recipe for creating a connected graph on \([m]\)

Lemma. \(\tilde{G}_m^p\) has the same distribution as \(G_m^p\), a component of \(G(n, p)\) conditioned to have vertex-set \([m]\).
Recipe for creating a connected graph on \([m]\)

Lemma. \(\tilde{G}_m^p\) has the same distribution as \(G_m^p\), a component of
\(G(n, p)\) conditioned to have vertex-set \([m]\).

Proof. For a connected graph \(G\) on \([m]\) which has \(T(G) = T\) and
surplus \(s\),

\[
\mathbb{P}\left(\tilde{G}_m^p = G\right) \propto (1 - p)^{-a(T)} p^s (1 - p)^{a(T) - s} = \left(\frac{p}{1 - p}\right)^s.
\]
Recipe for creating a connected graph on \([m]\)

Lemma. \(\tilde{G}_m^p\) has the same distribution as \(G_m^p\), a component of \(G(n, p)\) conditioned to have vertex-set \([m]\).

Proof. For a connected graph \(G\) on \([m]\) which has \(T(G) = T\) and surplus \(s\),

\[
\mathbb{P}\left(\tilde{G}_m^p = G\right) \propto (1 - p)^{-a(T)} p^s (1 - p)^{a(T) - s} = \left(\frac{p}{1 - p}\right)^s .
\]

Likewise, by the definition of \(G(n, p)\),

\[
\mathbb{P}\left(G_m^p = G\right) \propto \mathbb{P}\left(G(m, p) = G\right) = p^{m+s-1} (1 - p) \left(\frac{m}{2}\right)^{-s+1} \\
\propto \left(\frac{p}{1 - p}\right)^s .
\]

\(\square\)
Taking limits

So we need to prove that

- the tree \tilde{T}_m^p converges to a CRT coded by a tilted excursion;
- the locations of the surplus edges converge to the locations in our limiting picture.
Important aside: two different encodings of discrete trees

\[X(k) \]

\[H(k) \]

depth-first walk

height process
Important aside: two different encodings of discrete trees

Let T_m be a uniform random tree on $[m]$ and let
$(X^m(k), 0 \leq k \leq m)$ and $(H^m(k), 0 \leq k \leq m)$ be its depth-first walk and height process respectively.

Theorem. (Marckert and Mokkadem (2003))
As $m \to \infty$,

$$
\left((m^{-1/2} X^m(mt), 0 \leq t \leq 1), (m^{-1/2} H^m(mt), 0 \leq t \leq 1) \right)
\xrightarrow{d}
\left((e(t), 0 \leq t \leq 1), (2e(t), 0 \leq t \leq 1) \right),
$$

where $(e(t), 0 \leq t \leq 1)$ is a standard Brownian excursion.
Taking limits

We need to prove that

▶ the tree \tilde{T}_m^p converges to a CRT coded by a tilted excursion;
▶ the locations of the surplus edges converge to the locations in our limiting picture.

We will deal with the tree first. For simplicity, we will take $p = m^{-3/2}$; the general case is similar.
Part 1: Convergence of the tree

Write \tilde{X}^m for the depth-first walk associated with \tilde{T}_m, thought of as a càdlàg function $[0, m] \to \mathbb{R}^+$. Then

$$a \left(\tilde{T}_m \right) = \int_0^m \tilde{X}^m(s) ds.$$
Part 1: Convergence of the tree

Write \tilde{X}^m for the depth-first walk associated with \tilde{T}_m^p, thought of as a càdlàg function $[0, m] \to \mathbb{R}^+$. Then

$$a \left(\tilde{T}_m^p \right) = \int_0^m \tilde{X}^m(s)ds.$$

Recall that T_m is a uniform random tree on $[m]$ and that X^m is its depth-first walk. Then

$$\left(m^{-1/2}X^m(mt), 0 \leq t \leq 1 \right) \overset{d}{\to} \left(e(t), 0 \leq t \leq 1 \right).$$
Part 1: Convergence of the tree

Now use the change of measure to get from \tilde{X}^m to X^m: for any bounded continuous function f,

$$
\mathbb{E} \left[f \left(m^{-1/2} \tilde{X}^m(mt), 0 \leq t \leq 1 \right) \right] = \frac{\mathbb{E} \left[f \left(m^{-1/2} X^m(mt), 0 \leq t \leq 1 \right) (1 - p)^{-\int_0^m X^m(u)du} \right]}{\mathbb{E} \left[(1 - p)^{-\int_0^m X^m(u)du} \right]}
$$
Part 1: Convergence of the tree

Now use the change of measure to get from \tilde{X}^m to X^m: for any bounded continuous function f,

$$
\mathbb{E} \left[f \left(m^{-1/2} \tilde{X}^m(mt), 0 \leq t \leq 1 \right) \right] \\
= \frac{\mathbb{E} \left[f \left(m^{-1/2} X^m(mt), 0 \leq t \leq 1 \right) (1 - p)^{-m} \int_0^m X^m(u)du \right]}{\mathbb{E} \left[(1 - p)^{-m} \int_0^m X^m(u)du \right]} \\
= \frac{\mathbb{E} \left[f \left(m^{-1/2} X^m(mt), 0 \leq t \leq 1 \right) (1 - p)^{-m^{3/2}} \int_0^1 m^{-1/2} X^m(ms)ds \right]}{\mathbb{E} \left[(1 - p)^{-m^{3/2}} \int_0^1 m^{-1/2} X^m(ms)ds \right]}
$$
Part 1: Convergence of the tree

Now use the change of measure to get from \tilde{X}^m to X^m: for any bounded continuous function f,

$$
\mathbb{E} \left[\frac{f \left(m^{-1/2} \tilde{X}^m(mt), 0 \leq t \leq 1 \right)}{\mathbb{E} \left[\int_0^m X^m(u)du \right]^{m^{-3/2}}} \int_0^1 m^{-1/2} X^m(ms)ds \right]
$$

Since $\left(m^{-1/2} X^m(mt), 0 \leq t \leq 1 \right) \overset{d}{\rightarrow} (e(t), 0 \leq t \leq 1)$ and $p = m^{-3/2}$,

$$
(1 - p)^{-m^{3/2} \int_0^1 m^{-1/2} X^m(ms)ds} \overset{d}{\rightarrow} \exp \left(\int_0^1 e(u)du \right).
$$
Part 1: Convergence of the tree

Taking care with the limits, we obtain

\[\mathbb{E} \left[f \left(m^{-1/2} \tilde{X}^m(mt), 0 \leq t \leq 1 \right) \right] \rightarrow \frac{\mathbb{E} \left[f(e) \exp \left(\int_0^1 e(u) du \right) \right]}{\mathbb{E} \left[\exp \left(\int_0^1 e(u) du \right) \right]} = \mathbb{E} [f(\tilde{e})]. \]
Part 1: Convergence of the tree

Taking care with the limits, we obtain

\[
\mathbb{E} \left[f \left(m^{-1/2} \tilde{X}^m(mt), 0 \leq t \leq 1 \right) \right] \rightarrow \frac{\mathbb{E} \left[f(e) \exp \left(\int_0^1 e(u) du \right) \right]}{\mathbb{E} \left[\exp \left(\int_0^1 e(u) du \right) \right]} = \mathbb{E} [f(\tilde{e})].
\]

As in the uniform case, we get jointly

\[(m^{-1/2} \tilde{H}^m(mt), 0 \leq t \leq 1) \xrightarrow{d} (2\tilde{e}(t), 0 \leq t \leq 1)\]

(where the limit is the same tilted excursion).
Part 1: Convergence of the tree

Taking care with the limits, we obtain

\[
\mathbb{E} \left[f \left(m^{-1/2} \tilde{X}^m(mt), 0 \leq t \leq 1 \right) \right] \to \frac{\mathbb{E} \left[f(e) \exp \left(\int_0^1 e(u)du \right) \right]}{\mathbb{E} \left[\exp \left(\int_0^1 e(u)du \right) \right]} = \mathbb{E} \left[f(\tilde{e}) \right].
\]

As in the uniform case, we get jointly

\[
(m^{-1/2} \tilde{H}^m(mt), 0 \leq t \leq 1) \overset{d}{\to} (2\tilde{e}(t), 0 \leq t \leq 1)
\]

(where the limit is the same tilted excursion).

This is basically enough to prove that

\[
\frac{1}{\sqrt{m}} \tilde{T}^m \overset{d}{\to} \tilde{T}.
\]
Part 2: Surplus edges

The permitted edges are in bijective correspondence with the integer points under the graph of the depth-first walk. Since each permitted edge is included independently with probability p, the surplus edges form a Binomial point process.
A point at \((k, j)\) means “put an edge between the current vertex at step \(k\) and the vertex at distance \(j\) from the bottom of the list of alive vertices”.

Part 2: Surplus edges

Surplus edges almost go to ancestors... In fact, they go to younger sons of ancestors of the current vertex.
Part 2: Surplus edges

When we rescale, the distance between a vertex and one of its sons becomes small and so, in the limit, surplus “edges” do go to ancestors of the current vertex.
Part 2: Surplus edges

When we rescale, the distance between a vertex and one of its sons becomes small and so, in the limit, surplus “edges” do go to ancestors of the current vertex.

The Binomial point process of surplus edges, when rescaled, straightforwardly converges to the required Poisson point process.
When we rescale, the distance between a vertex and one of its sons becomes small and so, in the limit, surplus “edges” do go to ancestors of the current vertex.

The Binomial point process of surplus edges, when rescaled, straightforwardly converges to the required Poisson point process.

The difference between the depth-first walk and the height process is also small, and so the locations of the surplus “edges” are essentially as described in our limit process.
The continuum limit of critical random graphs
L. Addario-Berry, N. Broutin and C. Goldschmidt
arXiv:0903.4730 [math.PR].

Critical random graphs: limiting constructions and distributional properties
L. Addario-Berry, N. Broutin and C. Goldschmidt