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Factorials & pseudo-factorials
Factorials: the sequence (8,) = (n!) satisfies the recurrence

B 7 Y Z OkBn—k, Do
k=0

Pseudo-factorials: they satisfy the twisted recurrence

= 1.

n
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n
= (=)™ L) ks

Un 7
k=0
Equivalent choice: (—1)"; by contrast (—1) only gives signed factorials
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P T T S

A098777
k). 'k'=0..n), n>=0.

O Y ..

N

Monday 14 December 2009



e The EGF (exponential generating function) f(z E an |
n!
n=0

must converge in |z| < 1. Growth is numerically (7):

e |1/0

. K, K=~0.823

n——+0o0

n!

We shall see that | K = 27/37T(1/3)73 | = 0.8235025.

e Sign pattern: + - - + + - - + + - - + +

e Congruences: Period is mod 10); it is 36 (mod 7)

1 (mod
a, mod10 = 1,9.8.2.6.0,0,0,0,0,.. of nl,
0, mod7 = 1.6.5.2.2.2.2.4.1.6.6.6.6.5.3.4.4.4.4.1.2.5.5.5.5..
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Why & How?

e Roland Bacher (Grenoble) was investigating a collection of recurrences

loosely suggested by the Dixonian elliptic functions, as appear in
[Flajolet+Conrad]| SLC, 2006.

e He empirically noticed surprising congruences as well as a
continued fraction that seemed to be of a new kind:

1
F(Z)EZOznZ — 217 2
02 . 72
3.32. 72
42 ] 22
1-3 z 1
| AM’I;\%%JA
RJOURNALN

22010
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] E”ip‘cic Connexion

~~~ Dixonian functions =~~~
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The (easy) EGF

The recurrence

! n
ang (1)) (k) U Olp—k

k=0

translates into a functional equation for the EGF

f(z):

|

[
S
5| N

as follows:
f'(z) = —f(—z)z.
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e Start from | f/(z) = —f(—2z)?
Differentiate: f"(z) = 2f(—2)f'(—z).
Use original equation to get f(—z) — /—f/(z), hence an ODE

f(z) = —2\/—f’(z)f(z)2.

o “Cleverly” multiply by \/—f’(Z)

f(2)\/—F'(2) = 2f(2)*f'(2).

Integrate (with initial conditions):

/1 dw
— Z.
f(z) (2 _ W3)2/3

OQ The solution is the inverse of an Abelian integral / 1/(P3)%/3.
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Standardization

The EGF of pseudo-factorials satisfies

f(z) =2Y3sm (% — 21/32) ,

where the Dixon function sm is defined by

sz dy B
o (L3RBT

1 3
dy V3 1
and ms 3/0 (1-y3)?/3 2« (3>

1 2 4
Also: sm(z) =z Inv >F; {5, §; §; 23], with
- a(a+1)-b(b+1) 2

a-bzl |
Fla,bic;z] :== 1+ 225 +4 clc+1) 2177
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Lundberg

e The differential system |s" = ¢, ¢ = —s| gives rise to entire

functions that parameterize the circle F» : X% + Y? = 1.

s = sin(+); c = cos(-).

e The differential system | s’ = ¢?, ¢ = —s? | gives rise to

meromorphic functions that parameterize the Fermat cubic
F; X3+ Y3=1.

— Lundberg's hypergoniometric functions.
— A. C. Dixon as a simple basis of elliptic functions.
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Elliptic functions |

Def. An elliptic function is a doubly periodic meromorphic

function.
Proposition /

The function sm( - ) is elliptic.

Proof (Exercise: bare-handed).
— analytic near 0; a polar-like singularity along real axis;
— is simply periodic with a real period 274/331/27 =1 (1/3)3;

— satisfies invariance by rotation ::2%, hence second period:
SCe0a

[ + 1607, =6
-

Z Z
S T 1607 —

sm(z) =z — 4

3

’
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LTI

@ Algebraic curves of genus 1 are doughnuts. The integrals
have two “periods”. The inverse functions are elliptic

functions; i.e., doubly periodic meromorphic.
o WeierstraB o arises from y? = P3(z);
@ Jacobian sn,cn arise from y? = (1 — z2)(1 — k?z?);

o Dixonian sm,cm arise from y3 + z3 = 1.

hey satisfy (addition formulae!)

A

11
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2 E”iptic Connexions

NS N

~~~ Weierstrah forms & lattices ~
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The Welerstral3 o function

1 1
A\ being a lattice of C, consider | p(z |\) = Z’( 0P |
Z P

e Clearly meromorphic and doubly periodic.
o Coefficients in p(z) = z7%+72%2+? z* + ... are lattice invariants:

g=60» 'Q7% g =140» Q7% ...
e |t satisfies the differential equation
p'(2) = 4p(2)° — g2p(2) = g3

and it parametrizes the curve Y? = 4X3 — go X — g3.
e It is the inverse of an elliptic integral.

| /OO ds
nv ,
y \/453 — s — g3

Monday 14 December 2009



Proof: match zeros and poles; use (as usual) Liouville’'s Theorem.

With f(z) the EGF of pseudo-factorials:

—o'(z+3r) —2iV/3

f(i\/gz) B 2iv/3p(z + 3r)

9 @(2) — @(Z;Oa _4)7

where 6r = w32 1/3 = 2743312711 (1/3)3,

Notation: p(z; g2,g3). Here: p(z; 0, —4) relative to hex lattice.

BB
S
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Theorem 3. The pseudo-factorials are expressible as lattice sums involving a
twelfth root of unity: with p = 2rv/3 and r as in Eq. (22), one has, for any n > 2:

CSA-*—J;(

Asymptotics...

eeeeeeeeeeeeeeeeeeee



B Continued Fractions

NS AN

~~* The Stiel‘tjeS»-Rogers addition theorem ~
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The Stieltjes—Rogers Theorem (I)

The function ¢(z) = Y02  a,Z; satisfies an addition formula iff

Xk

p(x+y) = ZwkSOk(X)SOk(Y)a where @i (x) = T O(XkH)

c c=2Trr
A=Trv2

90 E=MC* _
I) 123 t'x.'f{7
¢=M

1 1
11—z cos(z)

Theorem , ———

An addition formula automatically gives a continued fraction for

F(z) = i apnz" = <</OOO e*p(zt) dt>>.

Examples:
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The Stieltjes—Rogers Theorem (Il)

Continued fraction : F(z) =

Dictionary :

Monday 14 December 2009
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Ck = Pkk+1 — Pk—1,k
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o0
f sech®u e ™du
0

AINS1 nous avons

» sinh (@) sinh (b u)

sinh (c )

Monday 14 December 2009

1.k
20k + 1)

J(k + 2)
BT z <+ -

ab

e~"Mdu =

- ,vz+ ‘)‘V:’J‘— x° +11

@n"+42n 4 1) ¢* — a® — b2,

4 n?

Uy =

472 —

i (n2¢? — a®) (née® — b9).

T. J. Stieltjes
(1856--1894)

une facon analogue

N S TR R
T+ o4+ x4+ 4 x

20



4. The addition formula

~~~ relative to the OGF F(2)~~
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Addition formula: Approaches

Lemma

In an addition formula,
ok
SR : o(x +y) = > wipr(er(y)i en(x) = 75 +
k
the @i (x) lie in Clp(x), ¢'(x), ¢"(x), .. |.
E.g.: sec(z) ~ = sec(z) - tan(z)*

Thus: for pseudo-factorials, the v, must be elliptic functions.

Caveat: The usual elliptic function formulae cannot be imported
verbatim = SR:

1P -9 )\ o
o) =7 (S=2) = o - ol

Monday 14 December 2009
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The Meixner class

Definition (The Meixner Class)
p(x+y) = p(x)ey)V(o(x)-a(y)),  a(0)=0, o'(0) #0.

Property: GF of orthopolys S Qk(z)tk /k! is A(t)e(®).

Theorem [Meixner]: There are only five cases reducible to

]. eZ 1 22/2 ].
Y € Y € Y, ‘
2 — ez

No elliptic function!! ... but ...

Monday 14 December 2009
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The Jacobian elliptic functions

~ ODD/EVEN Meixner

Y dt

o /(1—12)(1— K2t2)
with cn(z) := \/1 —sn(z)?; dn(z):=+/1— kZsn(z)2.

They satisfy an addition formula with odd/even alternation

sn(z) := Inv

cnxcny —snxdnx snydny

en(x +y) = 1 — k?sn?xsn?y
l.e.: cn: —cnsndn; k2cnsn2; —k?cnsn3dn: k2cn5n4;...
. 1
Vet = ———
2k? - z°
1 - 32 . ;2

1
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Try a formula a la “cn” ...7?

f(x+y)=f(x)f(y)V(o(x)aly)) + h(x)h(y)=(7(x)7(y))
with o(x) = O(x?); 7(x) = O(x?); h(x) = O(x).
Hope for paj o F(x)o(xY; paj+1(x) o< h(x)T(x)y ™!
e We indeed verify to order 100 and indices till 25 that

p2(x) ealx) o ws(x) ws(x)
2o(x)  @a(x) | o1(x)  p3(x)

e We can’t miss o(z) = 7(z) =3(z2 = z* +2° - 228 + . ..).
e We know that o(z) must be linearly related to f, " ", ...
e We can infer that W, = are simple rational functions.

Monday 14 December 2009
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Proposition (Conjecture?)

The EGF of pseudo factorials satisfies

FOAf(y) = 3(F() + FON(F) + ()

) = I T ) f (o) (L = FO)F(—y))

Proof. (/) Reduce to WeierstraBB o with known addition formula;

(ii) Get huge fraction D = A/B in X1, Y1, X2, Yo, where
X1 = p(x/iv3), Y1 =¢'(x/iV3),
(X2 = p(y/iv3), Y1 = ¢/(x/iV3)).

(/i) Check reduction to 0 modulo

ll' !l il ll'!»ll]lm ]| I
(V2 a1, Vi 440} SR

D = A/B, where A has 2388 monomials. Effect multivariate GCD:

A— 0: B+ 0. ~THA : ;1.
- 7 \\T#émk Alin, Frédéric, Bruno...
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The OGF of pseudo-factorials satisfies

Coefficients: , N
Cj = (—1)1._1 (j I T (2_ )J> : dj :j2(2 — (_1)j)-

Monday 14 December 2009
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3 Orthogonal

Polgnomials

~~~ A new brand of “e”il:)tic” Polgnomials S
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A family of orthogonal polynomials

Pk(Z)
Wk (2)

continued fraction at level k:

Convergents of the form are obtained by truncating the

0 1 1 —2z+ 72
1+ 3z4+62z2+1023"

)

1’ 142z

Theorem: The reciprocal polys of the denominators are formally
orthogonal w.r.t. a measure whose moments are the a,.

What are these polynomials? .
Cf elliptic polynomials by Carlitz (for “cn”) et al. EHIPUC
Polynomials

J.S. Lomont
John Brillhart
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Consider the reciprocal denominators polynomials
qx(z) == zXQx(1/z) and their EGF:

o tk
T(z,t) =) a(2) 7
k=0 '

We have T(z,t) = n(t)cosh(zJ(t)) + x(t)sinh(zJ(t)), where

‘ du
J(t)::/ —
o V1—3u?+3u

and n(t) =1+ t+--- is a branch of the genus 0 cubic

2+ 3t +3t(1+ t)y —2(1 — 3t* + tY)p*> = 0.

2t(1 + t)
Also: v(t) = t)2 — .
o X(6) = \ (e - o L

Monday 14 December 2009
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T(z,t) = n(t)cosh(zJ(t))+x(t)sinh(zJ(t)), J(t):= «/0 T ;I; 3

Interest: a new brand of elliptic polynomials
¢ {Carlitz, Al Salam, Lomont—Brilhart, Ismail-Masson}.

Suggests: A perhaps interesting “bimodal” Meixner class, yet to
be studied: exp + sinh, cosh?

Remarkably, for the original Dixon “sm,cm”, Gilewicz, Valent et
al. have a “trimodal” ~ E3(zK(t)) where E3( - ) is a 3—section of
the exponential and K(t) is the elliptic integral [(1 — t3)72/3.

Elliptic functions/integrals, continued fractions,
& orthogonal polynomials
What goes on here???

? [~ more to come at the end!]

Monday 14 December 2009
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Proof (orthopolys)

@ GF of polys is a priori within the holonomic class.

o But by brute force: degree/order is high and no chance of
solving directly. Need to simplify!

@ Mixture of induction and guessing with Gfun’s guess

o Verifications (proof) based on closure prop’ties, also w/ Gfun.

mapie

The wi Tox AMathorrats

el Mo ")
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6. Hankel determinants &

Congruences

S I:)lus some (conjecturecl) gooclies S
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Hankel determinants

Corollary 1 Let m be a positive integer. The Hankel determinant of pseudo-factorials

ao @y - Om—|
o o Wy v Wm
Y =
Um—-1 Gm -+ G2m-2
admits the closed form
gt (—1ym/23m*/4 (T, k!)z (m even)

(0 _ m—j __
H, =[]a}™" =
j=1

(_“)(m—l')/23(mz—l")f4(n;c"=—]1 k!)3 (m odd).

D ; : : o
where the a; = —j~(2 — (—1)") are the continued fraction numerators of (43).
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Congruences

(6.5,2.2.2,2.4.1,6.6. 5653 1444195555 3611 Lt24955 3]

An identity .. .everyhone should know! \
Pi(2)

If F(z) has CF convergents ( ) then
Qx(2) mod 7/

m(Z) a1ay -
Flz) = Z “ Qu(2) Qk+1 (z)

If the CF's numerators involve integers, then we get congruences
modulo A, ;= a1ay---a,:
The original sequence () is eventually periodic mod ay - - - ap.

mod 5 mod 11 mod 17 mod 23
P; Pl — Pi7 _ Pyz _
gs =M gy=TMo gr=Ms gy=Mn»
mod 7 mod 13 mod 19 mod 31

P M, Py _ I P m Py _ Ta
0 = Tad  On S QoS B Oir = Tac®
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So... Where are we?

S e —

37
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@ Theorem [F; Dumont 1980]. Jacobian
functions count alternating perms w/parity of peaks.

@ Theorem [Conrad+F, 2006]. Dixonian functions
have continued fractions

2

‘| Combinatorics

perms, partitions,
trees,

X > X
/ sm(u)e™ /> du =
0

1 + boX3 —

ees) STt D

].—|—b1X3 —

4 BN 0=

= levels in trees and an urn model (= Yule process), &c

@ Theorem [Bacher+F, 2006]. Pseudofactorials
ant1 = (—1)"1 Y (Z) aran_, have a CF

1

Zanz”: B

D2 72

1+ 3z

Monday 14 December 2009
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Merrg Christmas

GIFT. Define the Hurwitz numbers [Math. Ann. 51 (1899), 196-226] by

A= 1 1 (1)2
E, = bR g P ey g i
Qv ge:z (r 2l S\/—1)4V V2m 4

The ordinary generating function of (E,) satisfies

k

102E,,z”_1 == |

v>1 Ty e Thacat:

s Co=r2
(1 (2n)(2n + 1)%2(2n + 2)3 (e

where ¢; = 3, co = 2 and ¢, = { 16 (4n+1)(4n +5)

g w5l T n 1 (2n+ 1)3(2n_|_ 2)2(27’L—|—3) (n Odd)
6 (4n +1)(4n + 5) :

i

Monday 14 December 2009
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GIFT. Define the “equitharmonic numbers” by

(61)! , 1 1 (1)3
e, — E . : P =
K 6v —2im/3 2im/3\6v’
B rimae@mn (0,07} e ot g B

The generating function of (K,) admits the continued fraction representation

do - 2
-

1 (3n)(3n + 1)2(én +2)2(3n +3)2(3n + 4) |
1 (6n +1)(6n+7) |

__ 10880 _ 13810240 -
where dl— 13 7d2_T77 dn—

L :

1 ‘1‘1 4 b,
;J 3
R ¢ 4 R\
) & ’ s l'l ’ :
Ea ;

2IFDEE-7 ()()
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Facts ca”ing for a theorg... _

« Classitication of * (Und erstancling (some
orthogonal ob) Pollaczek continued
Polgnomials,cmc Meixner fractions?77

» Multimodal addition * Relations between CF
formulae in relation to & holonomy?’:’?

continued fractions

» Elliptic functi
and or’chogonal Rl EONS;

: continued fractions
Polgnomlals’:’?’? :

and higlﬂer genus???
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