$$
\begin{aligned}
& \text { Pseudo-factorials, } \\
& \text { elliptic functions } \\
& \text { \& continued fractions } \\
& \text { Philippe Flajolet } \\
& \text { joint with Roland Bacher } \\
& \text { ALGRITHMS Seminar, Dec. } 14,2009
\end{aligned}
$$

Factorials \& pseudo-factorials

Factorials: the sequence $\left(\beta_{n}\right)=(n!)$ satisfies the recurrence

$$
\beta_{n_{+}} \overline{\bar{T}} \sum_{k=0}^{n}\binom{n}{k} \beta_{k} \beta_{n-k}, \quad \beta_{0}=1 .
$$

Pseudo-factorials: they satisfy the twisted recurrence

$$
\alpha_{n_{+}} \overline{\bar{T}}(-1)^{n+1} \cdot \sum_{k=0}^{n}\binom{n}{k} \alpha_{k} \alpha_{n-k}, \quad \alpha_{0}=1 .
$$

Equivalent choice: $(-1)^{n}$; by contrast (-1) only gives signed factorials.
ATsT integer Sequences RESEARCH
Greetings from The On-Line Encyclopedia of Integer Sequences!
id:A098777 Search Hints

Search: id:A098777
Displaying 1-1 of 1 results found.
page 1
Format: long I short I internal I text Sort: relevance I references I number Highlight: on I off

```
A098777 Pseudo-factorials: a(0)=1,a(n+1)=(-1)^(n+1)*sum('binomial(n,k)*a(k)*a(n- +0
            k)','k'=0..n), n>=0.
    1, -1, -2, 2, 16, -40, -320, 1040, 12160, -52480, -742400, 3872000,
```

- The EGF (exponential generating function) $f(z):=\sum_{n=0}^{\infty} \alpha_{n} \frac{z^{n}}{n!}$ must converge in $|z|<1$. Growth is numerically (?):

$$
\left|\frac{\alpha_{n}}{n!}\right|^{1 / n} \underset{n \rightarrow+\infty}{\longrightarrow} \quad K, \quad K \approx 0.823
$$

We shall see that $\mathrm{K}=2^{7 / 3} \pi \Gamma(1 / 3)^{-3} \doteq 0.8235025$.

- Sign pattern: + - - + + - - + + - - + +
- Congruences: Period is $1(\bmod 10)$; it is $36(\bmod 7)$
$\alpha_{n} \bmod 10=1,9,8,2,6,0,0,0,0,0, \ldots, \quad$ cf $n!$,
$\alpha_{n} \bmod 7=1,6,5,2,2,2,2,4,1, \underline{6,6,6,6,5}, 3, \underline{4,4,4,4}, 1,2, \underline{5,5,5,5}, \ldots$

Why \& How?

- Roland Bacher (Grenoble) was investigating a collection of recurrences loosely suggested by the Dixonian elliptic functions, as appear in [Flajolet+Conrad] SLC, 2006.
- He empirically noticed surprising congruences as well as a continued fraction that seemed to be of a new kind:

1. Elliptic Connexion
 ~~~ Díxonian functions ~~~

The recurrence

$$
\alpha_{n_{+} \overline{\mathcal{T}}}(-1)^{n+1} \cdot \sum_{k=0}^{n}\binom{n}{k} \alpha_{k} \alpha_{n-k}
$$

translates into a functional equation for the EGF

$$
f(z):=\sum_{n} \alpha_{n} \frac{z^{n}}{n!}!
$$

as follows:

$$
f^{\prime}(z)=-f(-z)^{2}
$$

Solution $\rightsquigarrow ? ? ?$. .

- Start from $f^{\prime}(z)=-f(-z)^{2}$

Differentiate: $f^{\prime \prime}(z)=2 f(-z) f^{\prime}(-z)$.
Use original equation to get $f(-z) \mapsto \sqrt{-f^{\prime}(z)}$, hence an ODE

$$
f^{\prime \prime}(z)=-2 \sqrt{-f^{\prime}(z)} f(z)^{2} .
$$

- "Cleverly" multiply by $\sqrt{-f^{\prime}(z)}$

$$
f^{\prime \prime}(z) \sqrt{-f^{\prime}(z)}=2 f(z)^{2} f^{\prime}(z)
$$

Integrate (with initial conditions):

$$
\int_{f(z)}^{1} \frac{d w}{\left(2-w^{3}\right)^{2 / 3}}=z
$$

$\bigcirc \bigcirc$ The solution is the inverse of an Abelian integral $\int 1 /\left(P_{3}\right)^{2 / 3}$.

Standardization

Theorem

The EGF of pseudo-factorials satisfies

$$
f(z)=2^{1 / 3} \operatorname{sm}\left(\frac{\pi_{3}}{3}-2^{1 / 3} z\right),
$$

where the Dixon function sm is defined by

$$
\int_{0}^{\operatorname{sm} z} \frac{d y}{\left(1-y^{3}\right)^{2 / 3}}=z
$$

and $\pi_{3}=3 \int_{0}^{1} \frac{d y}{\left(1-y^{3}\right)^{2 / 3}}=\frac{\sqrt{3}}{2 \pi} \Gamma\left(\frac{1}{3}\right)^{3}$.
Also: $\operatorname{sm}(z)=z \operatorname{lnv}{ }_{2} F_{1}\left[\frac{1}{3}, \frac{2}{3} ; \frac{4}{3} ; z^{3}\right]$, with
$F[a, b ; c ; z]:=1+\frac{a \cdot b}{c} \frac{z^{1}}{1!}++\frac{a(a+1) \cdot b(b+1)}{c(c+1)} \frac{z^{2}}{2!} \cdots .$.

- The differential system $s^{\prime}=c, \quad c^{\prime}=-s$ gives rise to entire functions that parameterize the circle $\mathbf{F}_{2}: X^{2}+Y^{2}=1$.

$$
s=\sin (\cdot) ; \quad c=\cos (\cdot)
$$

- The differential system $s^{\prime}=c^{2}, \quad c^{\prime}=-s^{2}$ gives rise to meromorphic functions that parameterize the Fermat cubic $F_{3}: X^{3}+Y^{3}=1$.

$$
s=\operatorname{sm}(\cdot) ; \quad c=\mathrm{cm}(\cdot)
$$

- Lundberg's hypergoniometric functions.
- A. C. Dixon as a simple basis of elliptic functions.

Elliptic functions I

Def. An elliptic function is a doubly periodic meromorphic function.

Proposition

The function $\mathrm{sm}(\cdot)$ is elliptic.
Proof (Exercise: bare-handed).

- analytic near 0; a polar-like singularity along real axis;
— is simply periodic with a real period $2^{-4 / 3} 3^{1 / 2} \pi^{-1} \Gamma(1 / 3)^{3}$;
- satisfies invariance by rotation $\pm \frac{2 \pi}{3}$, hence second period:

$$
\operatorname{sm}(z)=z^{1}-4 \frac{z^{4}}{3!}+160 \frac{z^{7}}{7!}-\cdots
$$

- Algebraic curves of genus 1 are doughnuts. The integrals have two "periods". The inverse functions are elliptic functions; i.e., doubly periodic meromorphic.
- Weierstraß \wp arises from $y^{2}=P_{3}(z)$;
- Jacobian sn, cn arise from $y^{2}=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)$;
- Dixonian sm, cm arise from $y^{3}+z^{3}=1$.

They satisfy addition formulae!

2. Elliptic Connexions
 ~~ Weierstraß forms \& lattices ~~~

The Weierstraß \wp function

Λ being a lattice of \mathbb{C}, consider $\wp(z \mid \Lambda):=\sum^{\prime} \frac{1}{(z-\Omega)^{2}}-\frac{1}{\Omega^{2}}$

- Clearly meromorphic and doubly periodic.
- Coefficients in $\wp(z)=z^{-2}+? z^{2}+? z^{4}+\ldots$ are lattice invariants:

$$
g_{2}=60 \sum^{\prime} \Omega^{-4} ; \quad g_{4}=140 \sum^{\prime} \Omega^{-4}, \ldots
$$

- It satisfies the differential equation

$$
\wp^{\prime}(z)=4 \wp(z)^{3}-g_{2} \wp(z)=g_{3}
$$

and it parametrizes the curve $Y^{2}=4 X^{3}-g_{2} X-g_{3}$.

- It is the inverse of an elliptic integral:

$$
\operatorname{Inv} \int_{y}^{\infty} \frac{d s}{\sqrt{4 s^{3}-g_{2} s-g 3}},
$$

Proof: match zeros and poles; use (as usual) Liouville's Theorem.

Theorem

With $f(z)$ the EGF of pseudo-factorials:

$$
f(i \sqrt{3} z)=\frac{-\wp^{\prime}(z+3 r)-2 i \sqrt{3}}{2 i \sqrt{3} \wp(z+3 r)}, \quad \wp(z) \equiv \wp(z ; 0,-4)
$$

where $6 r=\pi_{3} 2^{-1 / 3}=2^{-4 / 3} 3^{1 / 2} \pi^{-1} \Gamma(1 / 3)^{3}$.
Notation: $\wp\left(z ; g_{2}, g_{3}\right)$. Here: $\wp(z ; \mathbf{0},-4)$ relative to hex lattice.

Theorem 3. The pseudo-factorials are expressible as lattice sums involving a twelfth root of unity: with $\rho=2 r \sqrt{3}$ and r as in Eq. (22), one has, for any $n \geq 2$:

$$
\begin{equation*}
\alpha_{n}=-\frac{n!}{\rho^{n+1}} \sum_{\lambda, \mu \in \mathbb{Z}} \frac{\zeta^{8 \lambda+4 \mu}}{\left[\left(\lambda-\frac{1}{2}\right) \zeta+\left(\mu-\frac{1}{2}\right) \zeta^{-1}\right]^{n+1}}, \quad \zeta:=e^{i \pi / 6} \tag{26}
\end{equation*}
$$

Asymptotics...

3. Continued Fractions

~~The Stieltjes-Rogers addition theorem ~~~

The Stieltjes-Rogers Theorem (I)

Definition

The function $\varphi(z)=\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}$ satisfies an addition formula iff

$$
\varphi(x+y)=\sum_{k} \omega_{k} \varphi_{k}(x) \varphi_{k}(y), \quad \text { where } \quad \varphi_{k}(x)=\frac{x^{k}}{k!}+O\left(x^{k+1}\right)
$$

Theorem

An addition formula automatically gives a continued fraction for $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\left\langle\left\langle\int_{0}^{\infty} e^{t} \varphi(z t) d t\right\rangle\right\rangle$.

The Stieltjes-Rogers Theorem (II)

Data: $\varphi(z)=1+\sum_{n} a_{n} \frac{z^{n}}{n!} ; \quad F(z)=1+\sum_{n} a_{n} z^{n}$
SR : $\varphi(x+y)=\sum_{k} \omega_{k} \varphi_{k}(x) \varphi_{k}(y) ; \quad \varphi_{k}(x)=\frac{x^{k}}{k!}+\varphi_{k, k+1} \frac{x^{k+1}}{(k+1)!}+\cdots$

Continued fraction :

$$
F(z)=\frac{1}{1-c_{0} z-\frac{a_{1} z^{2}}{1-c_{1} z-\frac{a_{2} z^{2}}{\ddots}}}
$$

Dictionary :

$$
\omega_{k}=a_{1} a_{2} \cdots a_{k} ; \quad c_{k}=\varphi_{k, k+1}-\varphi_{k-1, k}
$$

224
 DESERIEBVS DIVERGENTIBVS. 225

peripiciatur. His autem valoribus fucceflive fuoftitutis, erit

$$
\begin{array}{r}
1-1 x+2 x^{2}-6 x^{5}+24 x^{4}-120 x^{5}+720 x^{6} \\
\\
-5040 x^{7}+\text { etc. }=
\end{array}
$$

$$
A=\frac{1}{1+\frac{x}{1+\frac{x}{1+2 x}}}
$$

$$
\int_{0}^{\infty} \operatorname{sech}^{k} u e^{-z u} d u=\frac{1}{z+\frac{1 \cdot k}{z+\frac{2(k+1)}{z+\frac{3(k+2)}{z+}}}}
$$


```
Ainsi nous avons
    \(\int_{0}^{\infty} c \frac{\sinh (a u) \sinh (b u)}{\sinh (c u)} e^{-x u} d u=\frac{a b}{x^{2}+\lambda_{0}-x^{2}+\lambda_{1}-\bar{x}^{2}+\lambda_{2}-\cdots .}\)
    \(\lambda_{n}=\left(2 n^{2}+2 n+1\right) c^{2}-a^{2}-b^{2}\),
    \(\mu_{n}=\frac{4 n^{2}}{4 n^{2}-1}\left(n^{2} c^{2}-a^{2}\right)\left(n^{2} c^{2}-b^{2}\right)\).
```


On peut déduire de la formule (21) d'une façon analogue) . . $4 x^{y} \Sigma_{0}^{\infty} \frac{1}{(x+n)^{9}}-2 x-2=\frac{1}{x+\frac{p_{1}}{x+}} \frac{q_{1}}{x+} \frac{p_{2}}{x+} \frac{q_{2}}{x-1}$ $p_{n}=\frac{n^{2}(n+1)}{4 n+2}$, $q_{n}=\frac{n(n+1)^{2}}{4 n+2}$,

4. The addition formula
 $\sim \sim \sim ~ r e l a t i v e ~ t o ~ t h e ~ O G F F(z) ~ \sim ~ ~$

Addition formula: Approaches

Lemma

In an addition formula,

$$
\mathbf{S R}: \varphi(x+y)=\sum_{k} \omega_{k} \varphi_{k}(x) \varphi_{k}(y) ; \quad \varphi_{k}(x)=\frac{x^{k}}{k!}+\cdots
$$

the $\varphi_{k}(x)$ lie in $\mathbb{C}\left[\varphi(x), \varphi^{\prime}(x), \varphi^{\prime \prime}(x), \ldots\right]$.
E.g.: $\sec (z) \quad \rightsquigarrow \quad \frac{1}{k!} \sec (z) \cdot \tan (z)^{k}$

Thus: for pseudo-factorials, the φ_{k} must be elliptic functions.
Caveat: The usual elliptic function formulae cannot be imported verbatim $\not \equiv$ SR:

$$
\wp(x+y)=\frac{1}{4}\left(\frac{\wp^{\prime}(x)-\wp^{\prime}(y)}{\wp(x)-\wp(y)}\right)^{2}-\wp(x)-\wp(y) .
$$

Definition (The Meixner Class)
$\varphi(x+y)=\varphi(x) \varphi(y) \Psi(\sigma(x) \cdot \sigma(y)), \quad \sigma(0)=0, \sigma^{\prime}(0) \neq 0$.

Property: GF of orthopolys $\sum Q_{k}(z) t^{k} / k!$ is $A(t) e^{z H(t)}$.
Theorem [Meixner]: There are only five cases reducible to

$$
\sec (z), \quad \frac{1}{1-z}, \quad e^{e^{z}-1}, \quad e^{z^{2} / 2}, \quad \frac{1}{2-e z}
$$

No elliptic function!! ... but ...

~ ODD/EVEN Meixner

$$
\operatorname{sn}(z):=\operatorname{lnv} \int_{0}^{y} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}
$$

with $\operatorname{cn}(z):=\sqrt{1-\operatorname{sn}(z)^{2}} ; \quad \operatorname{dn}(z):=\sqrt{1-k^{2} \operatorname{sn}(z)^{2}}$.
They satisfy an addition formula with odd/even alternation

$$
\mathrm{cn}(x+y)=\frac{\mathrm{cn} x \mathrm{cn} y-\mathrm{sn} x \mathrm{dn} x \operatorname{sn} y \mathrm{dn} y}{1-k^{2} \operatorname{sn}^{2} x \operatorname{sn}^{2} y}
$$

I.e.: $\mathrm{cn} ; \quad-\mathrm{cnsndn} ; \quad k^{2} \mathrm{cnsn}^{2} ; \quad-k^{2} \mathrm{cnsn}{ }^{3} d n ; \quad k^{2} \mathrm{cnsn} n^{4} ; \ldots$

$$
\sum \mathrm{cn}_{n} z^{n}=\frac{1}{1-\frac{1 \cdot z^{2}}{1-\frac{2 k^{2} \cdot z^{2}}{1-\frac{3^{2} \cdot z^{2}}{\cdots}}}}
$$

Try a formula à la "cn" ...?

$$
f(x+y)=f(x) f(y) \Psi(\sigma(x) \sigma(y))+h(x) h(y) \equiv(\tau(x) \tau(y))
$$

with $\sigma(x)=O\left(x^{2}\right) ; \tau(x)=O\left(x^{2}\right) ; h(x)=O(x)$.
Hope for $\quad \varphi_{2 j} \propto f(x) \sigma(x)^{j} ; \quad \varphi_{2 j+1}(x) \propto h(x) \tau(x)^{j+1}$

- We indeed verify to order 100 and indices till 25 that

$$
\frac{\varphi_{2}(x)}{\varphi_{0}(x)} \propto \frac{\varphi_{4}(x)}{\varphi_{2}(x)} \propto \cdots ; \quad \frac{\varphi_{3}(x)}{\varphi_{1}(x)} \propto \frac{\varphi_{5}(x)}{\varphi_{3}(x)} \propto \cdots
$$

- We can't miss $\sigma(z)=\tau(z)=3\left(z^{2}-z^{4}+z^{6}-\frac{6}{7} z^{8}+\cdots\right)$.
- We know that $\sigma(z)$ must be linearly related to $f, f^{\prime}, f^{\prime \prime}, \ldots$
- We can infer that Ψ, 三 are simple rational functions.

Proposition (Conjecture?)

The EGF of pseudo factorials satisfies

$$
f(x+y)=\frac{f(x) f(y)-\frac{1}{3}\left(f(x)+f^{\prime}(x)\right)\left(f(y)+f^{\prime}(y)\right)}{1-\frac{1}{3}(1-f(x) f(-x))(1-f(y) f(-y))}
$$

Proof. (i) Reduce to Weierstraß \wp with known addition formula;
(ii) Get huge fraction $\mathcal{D}=A / B$ in $X_{1}, Y_{1}, X_{2}, Y_{2}$, where $X_{1}=\wp(x / i \sqrt{3}), Y_{1}=\wp^{\prime}(x / i \sqrt{3})$, $\left(X_{2}=\wp(y / i \sqrt{3}), Y_{1}=\wp^{\prime}(x / i \sqrt{3})\right)$.
(iii) Check reduction to 0 modulo

$$
\left\{Y_{1}^{2} \mapsto 4 X_{1}^{3}+4, \quad Y_{2}^{2} \mapsto 4 X_{2}^{3}+4\right\}
$$

$\mathcal{D}=\mathcal{A} / \mathcal{B}$, where A has 2388 monomials. Effect multivariate GCD:
$A \mapsto 0 ; B \nvdash 0$.
Alin, Frédéric, Bruno...

Theorem

The OGF of pseudo-factorials satisfies

$$
F(z)=\frac{1}{1+1 z+\frac{3 \cdot 1^{2} \cdot z^{2}}{1-1 z+\frac{2^{2} \cdot z^{2}}{1+3 z+\frac{3 \cdot 3^{2} \cdot z^{2}}{}}}}
$$

Coefficients:
$c_{j}=(-1)^{j-1}\left(j+\frac{1+(-1)^{j}}{2}\right) ; \quad a_{j}=j^{2}\left(2-(-1)^{j}\right)$.

5. Orthogonal Polynomials

~~~ A new brand of "elliptic" polynomials ~~~

\section*{A family of orthogonal polynomials}

Convergents of the form \(\frac{P_{k}(z)}{Q_{k}(z)}\) are obtained by truncating the continued fraction at level \(k\) :
\[
\frac{0}{1}, \quad \frac{1}{1+z}, \quad \frac{1-2 z+z^{2}}{1+3 z+6 z^{2}+10 z^{3}}, \quad \cdots
\]

Theorem: The reciprocal polys of the denominators are formally orthogonal w.r.t. a measure whose moments are the \(a_{n}\).

What are these polynomials?
Cf elliptic polynomials by Carlitz (for "cn") et al.


Consider the reciprocal denominators polynomials \(q_{k}(z):=z^{k} Q_{k}(1 / z)\) and their EGF:
\[
\Upsilon(z, t):=\sum_{k=0}^{\infty} q_{k}(z) \frac{t^{k}}{k!}
\]

\section*{Theorem}

We have \(\Upsilon(z, t)=\eta(t) \cosh (z J(t))+\chi(t) \sinh (z J(t))\), where
\[
J(t):=\int_{0}^{t} \frac{d u}{\sqrt{1-3 u^{2}+3 u^{4}}}
\]
and \(\eta(t)=1+t+\cdots\) is a branch of the genus 0 cubic
\[
2+3 t+3 t(1+t) \eta-2\left(1-3 t^{2}+t^{4}\right) \eta^{3}=0
\]

Also: \(\chi(t)=\sqrt{\eta(t)^{2}-\frac{2 t(1+t)}{1-3 t^{2}+3 t^{4}}}\).
\(\Upsilon(z, t)=\eta(t) \cosh (z J(t))+\chi(t) \sinh (z J(t)), \quad J(t):=\int_{0}^{t} \frac{d u}{\sqrt{1-3 u^{2}+3 u^{4}}}\)

Interest: a new brand of elliptic polynomials \(\notin\{\) Carlitz, AI Salam, Lomont-Brilhart, Ismail-Masson \(\}\).

Suggests: A perhaps interesting "bimodal" Meixner class, yet to be studied: exp \(\mapsto\) sinh, cosh?

Remarkably, for the original Dixon "sm,cm", Gilewicz, Valent et al. have a "trimodal" \(\approx E_{3}(z K(t))\) where \(E_{3}(\cdot)\) is a 3-section of the exponential and \(K(t)\) is the elliptic integral \(\int\left(1-t^{3}\right)^{-2 / 3}\).


Elliptic functions/integrals, continued fractions, \& orthogonal polynomials

What goes on here???
[ \(\rightsquigarrow\) more to come at the end!]

\section*{Proof (orthopolys)}
- GF of polys is a priori within the holonomic class.
- But by brute force: degree/order is high and no chance of solving directly. Need to simplify!
- Mixture of induction and guessing with Gfun's guess
- Verifications (proof) based on closure prop'ties, also w/ Gfun.

The Eivesential Yool for Matherrestics and Modging


\title{
6. Hankel determinants \&
}

\section*{Congruences}
~~~ plus some (conjectured) goodies ~~~

Corollary 1 Let m be a positive integer. The Hankel determinant of pseudo-factorials
\[
H_{m}^{(0)}:=\left|\begin{array}{cccc}
\alpha_{0} & \alpha_{1} & \cdots & \alpha_{m-1} \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{m-1} & \alpha_{m} & \cdots & \alpha_{2 m-2}
\end{array}\right|
\]
admits the closed form
\[
H_{m}^{(0)}=\prod_{j=1}^{m-1} a_{j}^{m-j}= \begin{cases}(-1)^{m / 2} 3^{m^{2} / 4}\left(\prod_{k=1}^{m!-1} k!\right)^{2} & (m \text { even }) \\ (-1)^{(m-1) / 2} 3^{\left(m^{2}-1\right) / 4}\left(\prod_{k=1}^{m-1} k!\right)^{2} & (m \text { odd }),\end{cases}
\]
where the \(a_{j}=-j^{2}\left(2-(-1)^{j}\right)\) are the continued fraction numerators of (43).

\section*{Congruences}

\section*{\(\overline{6,5,2,2,2,2,4,1,6,6,6,6,5,3,4,4,4,4,1,2,5,5,5,5,3,6,1,1,1,1,2,4,3,3,3,3}\)}

An identity . . . everyhone should know!
If \(F(z)\) has CF convergents \(\left(\frac{P_{k}(z)}{Q_{k}(z)}\right)\), then

\[
F(z)=\frac{P_{m}(z)}{Q_{m}(z)}+\sum_{k \geq m} \frac{a_{1} a_{2} \cdots a_{k}}{Q_{k}(z) Q_{k+1}(z)}
\]

If the CF's numerators involve integers, then we get congruences modulo \(A_{m}:=a_{1} a_{2} \cdots a_{m}\) :
The original sequence \(\left(\alpha_{n}\right)\) is eventually periodic mod \(a_{1} \cdots a_{m}\).
\begin{tabular}{llllll}
\hline \(\bmod 5\) & \(\bmod 11\) & \(\bmod 17\) & \(\bmod 23\) \\
\hline\(\frac{P_{5}}{Q_{5}} \equiv \Pi_{4}\) & \(\frac{P_{11}}{Q_{11}} \equiv \Pi_{10}\) & \(\frac{P_{17}}{Q_{17}} \equiv \Pi_{16}\) & \(\frac{P_{23}}{Q_{23}} \equiv \Pi_{22}\) & & \\
\hline & & & & \\
& & \(\bmod 7\) & \(\bmod 13\) & \(\bmod 19\) & \(\bmod 31\) \\
\hline
\end{tabular}

So... Where are we?
- Theorem [F; Dumont 1980]. Jacobian elliptic functions count alternating perms w/parity of peaks.
- Theorem [Conrad+F, 2006]. Dixonian functions have continued fractions

Combinatorics perms, partitions, trees, urn processes...
\(\equiv\) levels in trees and an urn model (\(\approx\) Yule process), \&c
- Theorem [Bacher+F, 2006]. Pseudofactorials \(a_{n+1}=(-1)^{n+1} \sum\binom{n}{k} a_{k} a_{n-k}\) have a CF
\[
\sum a_{n} z^{n}=\frac{1}{1+z+\frac{3 \cdot 1^{2} z^{2}}{1-z+\frac{2^{2} z^{2}}{1+3 z+\ddots}}}
\]
\[
\zeta(3)=\frac{6}{\varpi(0)-\frac{6}{\varpi(1)-\frac{1^{6}}{\varpi(2)-\frac{3^{6}}{\ddots}}}},
\]

\section*{Merry Christmas}

GIFT. Define the Hurwitz numbers [Math. Ann. 51 (1899), 196-226] by
\[
E_{\nu}=\frac{(4 \nu)!}{\Omega^{\nu}} \sum_{r, s \in \mathbb{Z}}^{\star} \frac{1}{(r+s \sqrt{-1})^{4 \nu}}, \quad \Omega:=\frac{1}{\sqrt{2 \pi}} \Gamma\left(\frac{1}{4}\right)^{2} .
\]

The ordinary generating function of \(\left(E_{\nu}\right)\) satisfies
\[
10 \sum_{\nu \geq 1} E_{\nu} z^{\nu-1}=\frac{1}{1-\frac{c_{1} \cdot z}{1-\frac{c_{2} \cdot z}{\ddots}}}
\]
where \(c_{1}=3, c_{2}=\frac{150}{13}\), and \(\quad c_{n}= \begin{cases}\frac{1}{16} \frac{(2 n)(2 n+1)^{2}(2 n+2)^{3}}{(4 n+1)(4 n+5)} & (n \text { even }) \\ \frac{1}{16} \frac{(2 n+1)^{3}(2 n+2)^{2}(2 n+3)}{(4 n+1)(4 n+5)} & (n \text { odd }) .\end{cases}\)

\section*{Happy New Year 2009}
\begin{tabular}{ll}
GIFT. Define the "equiharmonic numbers" by \\
\(K_{\nu}:=\frac{(6 \nu)!}{\Omega^{6 \nu}}\) & \(\sum_{\left(n_{1}, n_{2}\right) \in(\mathbb{Z} \times \mathbb{Z}) \backslash\{(0,0)\}} \frac{1}{\left(n_{1} e^{-2 i \pi / 3}+n_{2} e^{2 i \pi / 3}\right)^{6 \nu}}, \quad \Omega:=\frac{1}{2 \pi} \Gamma\left(\frac{1}{3}\right)^{3}\). \\
The generating function of \(\left(K_{\nu}\right)\) admits the continued fraction representation
\end{tabular}

\section*{Facts calling for a theory...}
- Classification of orthogonal polynomials, cf Meíxner
- Multímodal addítion formulae in relation to continued fractions and orthogonal polynomials???
- Understanding (some of) Pollaczek continued fractions???
- Relations between CF \& holonomy???
- Elliptic functions, continued fractions, and higher genus???~~~

