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Factorials & pseudo-factorials

Factorials: the sequence (βn) = (n!) satisfies the recurrence

βn =
n�

k=0

�
n

k

�
βkβn−k , β0 = 1.

Pseudo-factorials: they satisfy the twisted recurrence

αn = (−1)n+1 ·
n�

k=0

�
n

k

�
αkαn−k , α0 = 1.

Equivalent choice: (−1)n; by contrast (−1) only gives signed factorials.

+1

+1
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αn = (−1)n+1
n�

k=0

�
n

k

�
αkαn−k . 1, -1, -2, 2, 16, -40, -320, 1040, 12160

• The EGF (exponential generating function) f (z) :=
∞�

n=0

αn
zn

n!

must converge in |z | < 1. Growth is numerically (?):

���
αn

n!

���
1/n

−→
n→+∞

K, K ≈ 0.823.

We shall see that K = 27/3πΓ(1/3)−3 .
= 0.8235025.

• Sign pattern: + - - + + - - + + - - + +

• Congruences: Period is 1 (mod 10); it is 36 (mod 7)

αn mod 10 = 1, 9, 8, 2, 6, 0, 0, 0, 0, 0, . . . , cf n!,
αn mod 7 = 1, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6,5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, . . .
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Why & How?

• Roland Bacher (Grenoble) was investigating a collection of recurrences

loosely suggested by the Dixonian elliptic functions, as appear in

[Flajolet+Conrad] SLC, 2006.

• He empirically noticed surprising congruences as well as a

continued fraction that seemed to be of a new kind:

F (z) ≡
�

n

αnz
n

=
1

1+1 z +
3 · 12 · z2

1−1 z +
2
2 · z2

1+3 z +
3 · 32 · z2

1−3 z +
4
2 · z2

. . .

.

2010
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1. Elliptic Connexion
~~~ Dixonian functions ~~~
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The (easy) EGF

The recurrence

αn = (−1)n+1 ·
n�

k=0

�
n

k

�
αkαn−k

translates into a functional equation for the EGF

f (z) :=
�

n

αn
zn

n!
!

as follows:
f �(z) = −f (−z)2.

Solution � ??? . . .

+1
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• Start from f �(z) = −f (−z)2

Differentiate: f ��(z) = 2f (−z)f �(−z).
Use original equation to get f (−z) �→

�
−f �(z), hence an ODE

f ��(z) = −2
�
−f �(z)f (z)2.

• “Cleverly” multiply by
�
−f �(z)

f ��(z)
�
−f �(z) = 2f (z)2f �(z).

Integrate (with initial conditions):

� 1

f (z)

dw

(2− w3)2/3
= z .

♥♥ The solution is the inverse of an Abelian integral

�
1/(P3)

2/3.
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Standardization

Theorem

The EGF of pseudo-factorials satisfies

f (z) = 21/3 sm
�π3

3
− 21/3z

�
,

where the Dixon function sm is defined by
� sm z

0

dy

(1− y3)2/3
= z ,

and π3 = 3

� 1

0

dy

(1− y3)2/3
=

√
3

2π
Γ

�
1

3

�3

.

Also: sm(z) = z Inv 2F1

�
1

3
,
2

3
;
4

3
; z3

�
, with

F [a, b; c ; z ] := 1 + a·b
c

z1

1! + +a(a+1)·b(b+1)
c(c+1)

z2

2! · · · ..
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Lundberg

• The differential system s � = c , c � = −s gives rise to entire

functions that parameterize the circle F2 : X 2 + Y 2 = 1.

s = sin(·); c = cos(·).

• The differential system s � = c2, c � = −s2 gives rise to
meromorphic functions that parameterize the Fermat cubic
F3 :X 3 + Y 3 = 1.

s = sm(·); c = cm(·).

— Lundberg’s hypergoniometric functions.
— A. C. Dixon as a simple basis of elliptic functions.
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Elliptic functions I

Def. An elliptic function is a doubly periodic meromorphic
function.

Proposition

The function sm( · ) is elliptic.

Proof (Exercise: bare-handed).
— analytic near 0; a polar-like singularity along real axis;
— is simply periodic with a real period 2−4/331/2π−1Γ(1/3)3;
— satisfies invariance by rotation ±2π

3 , hence second period:

sm(z) = z1 − 4
z4

3!
+ 160

z7

7!
− · · · .
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Algebraic curves of genus 1 are doughnuts. The integrals
have two “periods”. The inverse functions are elliptic
functions; i.e., doubly periodic meromorphic.

Weierstraß ℘ arises from y2 = P3(z);

Jacobian sn, cn arise from y2 = (1− z2)(1− k2z2);

Dixonian sm, cm arise from y3 + z3 = 1.

They satisfy addition formulae!

28Wednesday, May 28, 2008 11Monday 14 December 2009



2. Elliptic Connexions
~~~ Weierstraß forms & lattices ~~~
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The Weierstraß ℘ function

Λ being a lattice of C, consider ℘(z |Λ) :=
�

� 1

(z − Ω)2
− 1

Ω2
.

• Clearly meromorphic and doubly periodic.
• Coefficients in ℘(z) = z−2+? z2+? z4 + ... are lattice invariants:

g2 = 60
�

�Ω−4; g4 = 140
�

�Ω−4, . . .

• It satisfies the differential equation

℘�(z) = 4℘(z)3 − g2℘(z) = g3

and it parametrizes the curve Y 2 = 4X 3 − g2X − g3.
• It is the inverse of an elliptic integral:

Inv

� ∞

y

ds�
4s3 − g2s − g3

,
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Theorem. Every elliptic function is rational in ℘(z) and ℘�
(z).

Proof: match zeros and poles; use (as usual) Liouville’s Theorem.

Theorem

With f (z) the EGF of pseudo-factorials:

f (i
√

3z) =
−℘�

(z + 3r)− 2i
√

3

2i
√

3℘(z + 3r)
, ℘(z) ≡ ℘(z ; 0,−4),

where 6r = π32
−1/3

= 2
−4/3

3
1/2π−1Γ(1/3)

3.

Notation: ℘(z ; g2, g3). Here: ℘(z ; 0,−4) relative to hex lattice.

14Monday 14 December 2009



Asymptotics...
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3. Continued Fractions
~~` The Stieltjes-Rogers addition theorem ~~~
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The Stieltjes–Rogers Theorem (I)

Definition

The function ϕ(z) =
�∞

n=0 an
zn

n! satisfies an addition formula iff

ϕ(x + y) =
�

k

ωkϕk(x)ϕk(y), where ϕk(x) =
xk

k!
+ O(xk+1).

Examples:
1

1− z
,

1

cos(z)
.

Theorem

An addition formula automatically gives a continued fraction for

F (z) =
∞�

n=0

anz
n =

��� ∞

0
e
tϕ(zt) dt

��
.
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The Stieltjes–Rogers Theorem (II)

Data: ϕ(z) = 1 +
�

n

an
zn

n!
; F (z) = 1 +

�

n

anz
n

SR : ϕ(x+y) =
�

k

ωkϕk(x)ϕk(y); ϕk(x) =
xk

k!
+ϕk,k+1

xk+1

(k + 1)!
+· · ·

Continued fraction : F (z) =
1

1− c0 z −
a1 z2

1− c1 z −
a2 z2

. . .

Dictionary : ωk = a1a2 · · · ak ; ck = ϕk,k+1 − ϕk−1,k
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T. J.  Stieltjes
(1856--1894)
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4. The addition formula
~~~ relative to the OGF F(z)~~ 
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Addition formula: Approaches

Lemma

In an addition formula,

SR : ϕ(x + y) =
�

k

ωkϕk(x)ϕk(y); ϕk(x) =
xk

k!
+ · · ·

the ϕk(x) lie in C[ϕ(x),ϕ�(x),ϕ��(x), . . .].

E.g.: sec(z) � 1
k! sec(z) · tan(z)k

Thus: for pseudo-factorials, the ϕk must be elliptic functions.

Caveat: The usual elliptic function formulae cannot be imported
verbatim �≡ SR:

℘(x + y) =
1

4

�
℘�(x)− ℘�(y)

℘(x)− ℘(y)

�2

− ℘(x)− ℘(y).
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The Meixner class

Definition (The Meixner Class)

ϕ(x + y) = ϕ(x)ϕ(y) Ψ
�
σ(x) · σ(y)

�
, σ(0) = 0, σ�(0) �= 0.

Property: GF of orthopolys
�

Qk(z)tk/k! is A(t)ezH(t).

Theorem [Meixner]: There are only five cases reducible to

sec(z),
1

1− z
, ee

z−1, ez
2/2,

1

2− ez
.

No elliptic function!! ... but ...

23Monday 14 December 2009



The Jacobian elliptic functions

sn(z) := Inv
� y

0

dt�
(1− t2)(1− k2t2)

.

with cn(z) :=
�

1− sn(z)2; dn(z) :=
�

1− k2 sn(z)2.

They satisfy an addition formula with odd/even alternation

cn(x + y) =
cn x cn y − sn x dn x sn y dn y

1− k2 sn2 x sn2 y

I.e.: cn; − cn sn dn; k2 cn sn2; −k2 cn sn3 dn; k2 cn sn4; . . .

�
cnn zn =

1

1−
1 · z2

1−
2k2 · z2

1−
32 · z2

· · ·

.

~ ODD/EVEN Meixner
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Try a formula à la “cn” . . . ?

f (x + y) = f (x)f (y)Ψ(σ(x)σ(y)) + h(x)h(y)Ξ(τ(x)τ(y))

with σ(x) = O(x2
); τ(x) = O(x2

); h(x) = O(x).

Hope for ϕ2j ∝ f (x)σ(x)
j
; ϕ2j+1(x) ∝ h(x)τ(x)

j+1

• We indeed verify to order 100 and indices till 25 that

ϕ2(x)

ϕ0(x)
∝ ϕ4(x)

ϕ2(x)
∝ · · · ;

ϕ3(x)

ϕ1(x)
∝ ϕ5(x)

ϕ3(x)
∝ · · · .

• We can’t miss σ(z) = τ(z) = 3(z2 − z4
+ z6 − 6

7z8
+ · · · ).

• We know that σ(z) must be linearly related to f , f �, f ��, . . .
• We can infer that Ψ,Ξ are simple rational functions.
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Proposition (Conjecture?)

The EGF of pseudo factorials satisfies

f (x + y) =
f (x)f (y)− 1

3(f (x) + f �(x))(f (y) + f �(y))

1− 1
3(1− f (x)f (−x))(1− f (y)f (−y))

.

Proof. (i) Reduce to Weierstraß ℘ with known addition formula;

(ii) Get huge fraction D = A/B in X1,Y1,X2,Y2, where
X1 = ℘(x/i

√
3), Y1 = ℘�(x/i

√
3),

(X2 = ℘(y/i
√

3), Y1 = ℘�(x/i
√

3)).

(iii) Check reduction to 0 modulo

�
Y 2

1 �→ 4X 3
1 + 4, Y 2

2 �→ 4X 3
2 + 4

�

D = A/B, where A has 2388 monomials. Effect multivariate GCD:
A �→ 0; B ��→ 0.

Alin, Frédéric, Bruno...
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Theorem

The OGF of pseudo-factorials satisfies

F (z) =
1

1 + 1 z +
3 · 12 · z2

1− 1 z +
22 · z2

1 + 3 z +
3 · 32 · z2

. . .

.

Coefficients:

cj = (−1)j−1

�
j +

1 + (−1)j

2

�
; aj = j

2(2− (−1)j).
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5. Orthogonal 
Polynomials

~~~ A new brand of “elliptic” polynomials ~~~
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A family of orthogonal polynomials

Convergents of the form
Pk(z)

Qk(z)
are obtained by truncating the

continued fraction at level k:

0

1
,

1

1 + z
,

1− 2z + z2

1 + 3z + 6z2 + 10z3
, · · ·

Theorem: The reciprocal polys of the denominators are formally
orthogonal w.r.t. a measure whose moments are the an.

What are these polynomials?

Cf elliptic polynomials by Carlitz (for “cn”) et al.
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Consider the reciprocal denominators polynomials
qk(z) := zkQk(1/z) and their EGF:

Υ(z , t) :=
∞�

k=0

qk(z)
tk

k!

Theorem

We have Υ(z , t) = η(t) cosh(zJ(t)) + χ(t) sinh(zJ(t)), where

J(t) :=

� t

0

du√
1− 3u2 + 3u4

and η(t) = 1 + t + · · · is a branch of the genus 0 cubic

2 + 3t + 3t(1 + t)η − 2(1− 3t2 + t4)η3 = 0.

Also: χ(t) =

�
η(t)2 − 2t(1 + t)

1− 3t2 + 3t4
.
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Υ(z , t) = η(t) cosh(zJ(t))+χ(t) sinh(zJ(t)), J(t) :=

� t

0

du√
1− 3u2 + 3u4

Interest: a new brand of elliptic polynomials
�∈ {Carlitz, Al Salam, Lomont–Brilhart, Ismail–Masson}.

Suggests: A perhaps interesting “bimodal” Meixner class, yet to
be studied: exp �→ sinh, cosh?

Remarkably, for the original Dixon “sm,cm”, Gilewicz, Valent et
al. have a “trimodal” ≈ E3(zK (t)) where E3( · ) is a 3–section of
the exponential and K (t) is the elliptic integral

�
(1− t3)−2/3.

Elliptic functions/integrals, continued fractions,
& orthogonal polynomials

What goes on here???
[� more to come at the end!]
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Proof (orthopolys)

GF of polys is a priori within the holonomic class.

But by brute force: degree/order is high and no chance of
solving directly. Need to simplify!

Mixture of induction and guessing with Gfun’s guess

Verifications (proof) based on closure prop’ties, also w/ Gfun.
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THANKS,
BRUNO!!
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6. Hankel determinants & 
Congruences

~~~ plus some (conjectured) goodies ~~~
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Hankel determinants
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Congruences

An identity . . . everyhone should know!

If F (z) has CF convergents

�
Pk(z)

Qk(z)

�
, then

F (z) =
Pm(z)

Qm(z)
+

�

k≥m

a1a2 · · · ak

Qk(z) Qk+1(z)
.

If the CF’s numerators involve integers, then we get congruences
modulo Am := a1a2 · · · am:
The original sequence (αn) is eventually periodic mod a1 · · · am.

mod 7
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So... Where are we?
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Theorem [F; Dumont 1980]. Jacobian elliptic
functions count alternating perms w/parity of peaks.

Theorem [Conrad+F, 2006]. Dixonian functions
have continued fractions
� ∞

0
sm(u)e−u/x du =

x2

1 + b0x3 −
1 · 22 · 33 · 4 x6

1 + b1x3 −
4 · 52 · 62 · 7 x6

· · ·

;

≡ levels in trees and an urn model (≈Yule process), &c

Theorem [Bacher+F, 2006]. Pseudofactorials
an+1 = (−1)n+1

��n
k

�
akan−k have a CF

�
anz

n =
1

1 + z +
3 · 12 z2

1− z +
22 z2

1 + 3z +
. . .

.

29Wednesday, May 28, 2008

Combinatorics
perms, partitions,

trees,
urn processes...
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Merry Christmas

24 dec 2008

GIFT. Define the Hurwitz numbers [Math. Ann. 51 (1899), 196–226 ] by

Eν =
(4ν)!
Ων

�

r,s∈Z

� 1
�
r + s

√
−1

�4ν , Ω :=
1√
2π

Γ
�

1
4

�2

.

The ordinary generating function of (Eν) satisfies

10
�

ν≥1

Eνzν−1 =
1

1−
c1 · z

1−
c2 · z

. . .

,

where c1 = 3, c2 = 150
13 , and cn =






1
16

(2n)(2n + 1)2(2n + 2)3

(4n + 1)(4n + 5)
(n even)

1
16

(2n + 1)3(2n + 2)2(2n + 3)
(4n + 1)(4n + 5)

(n odd).

1
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 Happy New Year 2009

27 Dec 2008

GIFT. Define the “equiharmonic numbers” by

Kν :=
(6ν)!
Ω6ν

�

(n1,n2)∈(Z×Z)\{(0,0)}

1
(n1e−2iπ/3 + n2e2iπ/3)6ν

, Ω :=
1
2π

Γ
�

1
3

�3

.

The generating function of (Kν) admits the continued fraction representation

7
36

�

ν≥1

Kνzν−1 =
1

1−
d1 · z

1−
d2 · z

. . .

,

where d1 = 10880
13 , d2 = 13810240

247 , dn =
1
4

(3n)(3n + 1)2(3n + 2)2(3n + 3)2(3n + 4)
(6n + 1)(6n + 7)

.

1
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Facts calling for a theory...
Classification of 
orthogonal 
polynomials,cf Meixner

Multimodal addition 
formulae in relation to 
continued fractions 
and orthogonal 
polynomials???

Understanding (some 
of) Pollaczek continued 
fractions???

Relations between CF 
& holonomy???

Elliptic functions, 
continued fractions, 
and higher genus???
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