CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Fast Integer Multiplication with
Schonhage-Strassen’s Algorithm

Alexander Kruppa
CACAOQO team at LORIA, Nancy

séminaire Algorithms INRIA Rocquencourt

Contents

Contents

Contents of this talk:
1. Basics of Integer Multiplication
(a) by polynomial multiplication
(b) Evaluation/Interpolation
(c) Karatsuba’s method
(d) Toom-Cook method
(e) FFT and weighted transforms

(f) Schonhage-Strassen’s Algorithm

Alexander Kruppa 2 INRIA Rocquencourt

Contents
2. Motivation for Improving SSA
3. Schonhage-Strassen’s Algorithm

4. High-Level Improvements

(a) Mersenne Transform
(b) CRT Reconstruction
(c) /2 Trick

5. Low-Level Improvements
(a) Arithmetic modulo 2" + 1

(b) Cache Locality
(c) Fine-Grained Tuning

6. Timings, Comparisons and Untested ldeas

Alexander Kruppa 3 INRIA Rocquencourt

Integer Multiplication

Integer Multiplication

e Problem: given two n-word (word base () integers

n—1

1

a = § ,
1=0

0 < a; < B and likewise for b, compute
2n—1

c=ab = g ci3'
i=0
n—1 n—1

— Z Z az'bjﬁiﬂ,

i=0 j=0
with 0 < ¢; < (3.

Alexander Kruppa 4 INRIA Rocquencourt

by Polynomial Multiplication

by Polynomial Multiplication

e \We can rewrite the problem as polynomial arithmetic:

so that a = A(f3), likewise for B(x), then
C(r) = A(x)B(x)

n—1 n—1

= Z Z aibjxiﬂ

i=0 j=0
so that c = ab = C(().

e Double sum has complexity O(n?) (Grammar School Algorithm),
we can do much better

Alexander Kruppa 5 INRIA Rocquencourt

Evaluation/Interpolation

Evaluation/Interpolation

e Unisolvence Theorem: Polynomial of degree d — 1 is determined
uniquely by values at d distinct points

e Since C'(k) = A(k)B(k) for all k € R for ring R, reduce the
polynomial multiplication to:

1. Evaluate A(x), B(x) at 2n — 1 points ky, . . . , k2,2

2. Pairwise multiply to get C'(k;) = A(k;) B(k;)

3. Interpolate C'(z) from its values C'(k;)

Alexander Kruppa 6 INRIA Rocquencourt

Karatsuba’s Method

Karatsuba’s Method

e First algorithm to use this principle (Karatsuba and Ofman, 1962)
e Multiplies polynomials of degree 1: A(x) = ag + a1z

e Suggested points of evaluation: 0, 1, oo

o A(0) = ap, A(1) = ag + a1, A(o0) = ay (same for B(x))

e C'(0) = apby, C(1) = (ap + a1)(bo + b1), C(00) = aiby

o cy=C(0),co=C(00),c1 =C(1) —cy— ¢

e Product of 2n words computed with 3 pointwise multiplications of
n words each, applied recursively: O(n'°%2(3)) = O(n!5%)

Alexander Kruppa 7 INRIA Rocquencourt

Toom-Cook Method

Toom-Cook Method

e Generalized to polynomials of larger degree (Toom, 1963, Cook,
1966)

e Product of two n word integers with A(x), B(x) of degree d:
2d + 1 products of n/(d + 1) word integers

e For fixed d: complexity O(n'°%¢+124+1)) ‘e g. d = 2: O(n!1%%)

e Interpolation/Evaluation costly (O(dnlog(d))), cannot increase d
arbitrarily for given n

e Choosing d as function of n allows algorithm in O(n'"¢), for any
e > (. Small exponents need very large n

Alexander Kruppa 8 INRIA Rocquencourt

Evaluation/Interpolation with FFT

Evaluation/Interpolation with FFT

e FFT solves problem of costly evaluation/interpolation
e Length-¢ DFT of ay, ..., as—1 in R computes a; = A(wg), 0<j<
¢, with wy an ¢-th principal root of unity in R: ¢-point polynomial

evaluation

e Length-¢ IDFT computes a; from given a;: (-point polynomial
interpolation

e With FFT algorithm, algebraic complexity only O (¢ log(¥))

e Problem: R needs to support length-¢ FFT (preferably ¢ a power
of 2): needs ¢-th principal root of unity, ¢ a unit

Alexander Kruppa 9 INRIA Rocquencourt

Weighted Transform

Weighted Transform

e Since (w))! = 1forallj € N, Ci(z)z' + Cy(x) has same DFT
coefficients as C' () + Cy(z): implicit modulus z* — 1 in DFT

e FFT convolution gives C(z) = (A(x)B(zx)) mod (z* — 1): cyclic
convolution

e Can change that modulus with weighed transform: compute
C(wx) = (A(wz)B(wz)) mod (x* — 1). Then
A(wz)B(wz) = Cy(wz)z'w’ + Co(wz)
Ci(wz)z'w' + Co(wz) mod (z* — 1)
— C1(wz)w' + Co(wz)
so that C'(z) = (A(x)B(z)) mod (x* — w")

Q
=

=
||

e With w' = —1, we get modulus z‘ + 1: negacyclic convolution, but
need 2(-th root of unity in R

Alexander Kruppa 10 INRIA Rocquencourt

Schénhage-Strassen’s Algorithm: Basic Idea

Schonhage-Strassen’s Algorithm:
Basic Idea

e First algorithms to use FFT (Schonhage and Strassen 1971)
e Usesring R, = Z/(2" + 1)Z for transform, with £ = 2" | n

e Then 2"/ = —1 (mod 2"+ 1): s0 2"/* € R,, is 2(-th root of unity,
multiplication by powers of 2 is fast! (O(n))

e Allows length ¢ weighted transform for negacyclic convolution

e Write input a = A(2M), b = B(2M), compute C'(z) = A(z)B(x)
(mod 2 +1). Then ¢ = C(2M) = ab (mod 2¢ + 1)

e Point-wise products modulo 2" + 1 use SSA recursively: choose
next level's ¢, M’ so that M’V = n

Alexander Kruppa 11 INRIA Rocquencourt

Improvements to Schonhage-
Strassen’s Algorithm

Motivation for Improving SSA

Motivation for Improving SSA

e Integer multiplication is fundamental to arithmetic, used in PRP
testing, ECPP, polynomial multiplication

e Schonhage-Strassen’s algorithm [SSA]: good asymptotic
complexity O(n log n loglog n), fast in practice for large operands,
exact (only integer arithmetic)

e Used in GMP, widely deployed

e We improved algorithmic aspects of Schonhage-Strassen

e Validated by implementation based on GMP 4.2.1 [GMP]

Alexander Kruppa 13 INRIA Rocquencourt

Schénhage-Strassen’s Algorithm

Schonhage-Strassen’s Algorithm

e SSA reduces multiplication of two .S-bit integers to £ multiplications
of approx. 4.5/ (-bit integers

e Example: multiply two numbers a, b of 2% bits each = product
has at most 22! bits

1. Choose N = 22! and a good ¢, for this example ¢ = 512. We
compute ab mod (2% + 1)

2. Write @ as polynomial of degree ¢, coefficients a; < 2™ with
M = N/{, a = a(2M). Same for b

3. ab = a(2")b(2*) mod (2% + 1), compute
c(z) = a(x)b(z) mod (z' 4+ 1)

4. Convolution theorem: Fourier transform and pointwise
multiplication

Alexander Kruppa 14 INRIA Rocquencourt

Schénhage-Strassen’s Algorithm

5. FFT needs /-th root of unity: map to Z /(2" + 1)Z[x] with £ | n.
Then 22"/¢ has order /

6. We need 2" + 1 > ¢;: choose n > 2M + log,(¢) + 1

7. Compute c(x) = a(z)b(z) mod (z' + 1), evaluate ab = c¢(2M)
- and we're done!

8. Benefits:
- Root of unity is power of 2
- Reduction mod (2" + 1) is fast

- Point-wise products can use SSA recursively without
padding
7 = Zon ., = Zlx] mod (' + 1) = Zga1[x] mod (2 + 1) = Zgayy

No, recurse n
small?

Yes, multiply

Alexander Kruppa 15 INRIA Rocquencourt

High-Level Optimizations

High-Level Optimizations

Alexander Kruppa 16 INRIA Rocquencourt

Mersenne Transform

Mersenne Transform

e Convolution theorem implies reduction mod (z* — 1)

e Convolution mod(z* + 1) needs weights 6" with ord(f) = 2¢,
needs ¢ | n to get 2¢-th root of unity in R,

e Computing ab mod (2% + 1) to allows recursive use of SSA, but is
not required at top level

e MapaandbtoZ/(2" — 1)Z instead:
compute c(z) = a(x)b(x) mod (z* — 1)

e Condition relaxes to / \ 2n. Twice the transform length, smaller n

e No need to apply/unapply weights

Alexander Kruppa 17 INRIA Rocquencourt

CRT Reconstruction

a,b

72N +1)Z

Convolution

ab
with 2 + 1 > ab

Alexander Kruppa

CRT Reconstruction

72N +1)Z

Convolution

a,b
| | |
7./ (2N —1)Z
Convolution
CRT
|
ab

with (27 +1)(2°Y — 1) > ab

18

INRIA Rocquencourt

CRT Reconstruction

e Atleastone of (2" — 1,2V +1) and (2" +1, 25N —1) is coprime

e Our implementation uses (2" +1, 2" —1) : always coprime, good
speed

e Smaller convolution, finer-grained parameter selection

Alexander Kruppa 19 INRIA Rocquencourt

The /2 Trick

The 2 Trick

e If 4 | n, 2 is a quadratic residue in Z /(2" + 1)Z

e In that case, v/2 = 23"/* — 2"/*: simple form, multiplication by v/2
takes only 2 shift, 1 subtraction modulo 2" + 1

e Offers root of unity of order 4n, allows ¢ | 2n for Fermat transform,
¢ | 4n for Mersenne transform

e Sadly, higher roots of 2 usually not available in Z/(2" + 1)Z, or
have no simple form

Alexander Kruppa 20 INRIA Rocquencourt

Low-Level Optimizations

Low-Level Optimizations

Alexander Kruppa 21 INRIA Rocquencourt

Arithmetic modulo 2™ + 1

Arithmetic modulo 27 + 1

e Residues stored semi-normalized (< 2""1), each with m = n/w
full words plus one extra word < 1

e Adding two semi-normalized values:

c = a[m] + b[m] + mpn_add_n (r, a, b, m);
r{m] = (r[0] < c);
MPN_DECR U (r, m + 1, ¢ — r[m]);

Assures r[m] =0orl,c—r[m] > r[0] = r[m] = 1 socarry
propagation must terminate.

e Conditional branch only in mpn_add_n loop and (almost always
non-taken) in carry propagation of MPN_DECR_U

e Similar for subtraction, multiplication by 2*

Alexander Kruppa 22 INRIA Rocquencourt

Improving Cache Locality

Improving Cache Locality

e SSA behaves differently than, say, complex floating point FFT:
elements have hundreds or thousands of bytes instead of 16

e Recursive implementation preferable, reduces working data set
size quickly, overhead small compared to arithmetic

e Radix 4 transform fuses two levels of butterflies on four inputs. Half
as many recursion levels, 4 operands usually fit into level 1 cache

— i e
@i @j + Qi
R 4 _ >< NI I
—. o
Nk
Wik w(a; — aig) | NS NN
Radix-2 butterfly Radix-4 butterfly

Alexander Kruppa 23 INRIA Rocquencourt

Improving Cache Locality

e Bailey’s 4-step algorithm (radix VI transform)

- groups half of recursive levels into first pass, other half into
second pass

- Each pass is again a set of FFTs, each of length VI

- If length V¢ transform fits in level 2 cache: only two passes
over memory per transfrom

- Extremely effective for complex floating-point FFTs, we found it
useful for SSA with large ¢ as well

e Fusing different stages of SSA
- Do as much work as possible on data while it is in cache

- When cutting input a into M-bit size coefficients a =
Zogz<£ a;2'M | also apply weights for negacyclic transform and
perform first FFT level (likewise for b)

- Similar ideas for other stages

Alexander Kruppa 24 INRIA Rocquencourt

Fine-Grained Tuning

Fine-Grained Tuning

e Up to version 4.2.1, GMP uses simple tuning scheme: transform
length grows monotonously with input size

e Not optimal: time over input size graphs for
different transform lengths intersect multiple times:

0.0002
0.00019
0.00018
0.00017
0.00016
0.00015
0.00014
0.00013

Seconds

700 750 800 850 900

Size in 64-bit words

Alexander Kruppa 25 INRIA Rocquencourt

Fine-Grained Tuning

e New tuning scheme determines intervals of input size and optimal
transform length

e Also determines pairs of Mersenne/Fermat transform lenghts for
CRT

e Time-consuming (ca. 1h up to 1M words) but yields significant
speedup

Alexander Kruppa 26 INRIA Rocquencourt

Timings and Comparisons

Timings and Comparisons

e Our code is about 40% faster than GMP 4.2.1 and
Magma 2.13-6, more than twice as fast as GMP 4.14

80
GMP 4.14

70 | MagmaV2.13-6 /]
GMP421 —— -

60 - new GMPcode]

Seconds

2.5e6 5e6 7.5e6 le7 1.25¢7 1.5¢7

Size in 64-bit words

Alexander Kruppa 27 INRIA Rocquencourt

Timings and Comparisons

e New code by William Hart for FLINT is competitive with ours, up to
30% faster for some input sizes

e Prime95 and Glucas implement complex floating point FFT for
integer multiplication, mostly for arithmetic mod 2" — 1 (Lucas-
Lehmer test for Mersenne numbers)

- Considerably faster: Prime95 10x on Pentium 4, 2.5x on
Opteron; Glucas 5x on Pentium 4, 2x on Opteron

- Danger of round-off error due to floating point arithmetic

- Provably correct rounding possible with about 2x the transform
length

- Prime95 written in assembly, non-portable

Alexander Kruppa 28 INRIA Rocquencourt

Untested Ideas

Untested Ideas

e Special code for point-wise multiplication:

- Length 3 - 2% transform

- Karatsuba and Toom-Cook with reduction mod 2" + 1 in
interpolation step

- Short-length, proven correct complex floating-point FFT
e Truncated Fourier transform

e Flrers new algorithm has lower theoretical complexity
O(nlog(n)2"°s). How fast is it in practice?

Alexander Kruppa 29 INRIA Rocquencourt

REFERENCES

References

[GMP] T. Granlund, The GNU Multiple Precision Arithmetic library,
http://gmplib.org/

[SSA] A. Schonhage and V. Strassen, Schnelle Multiplikation grof3er
Zahlen, Computing 7 (1971)

Source tarball with new code available at
<http://www.loria.fr/ " kruppaal>

Alexander Kruppa 30 INRIA Rocquencourt

	Title slide
	Contents
	Integer Multiplication
	by Polynomial Multiplication
	Evaluation/Interpolation
	Karatsuba's Method
	Toom-Cook Method
	Evaluation/Interpolation with FFT
	Weighted Transform
	Schönhage-Strassen's Algorithm: Basic Idea
	
	Motivation for Improving SSA
	Schönhage-Strassen's Algorithm
	High-Level Optimizations
	Mersenne Transform
	CRT Reconstruction
	The 2 Trick
	Low-Level Optimizations
	Arithmetic modulo 2n+1
	Improving Cache Locality
	Fine-Grained Tuning
	Timings and Comparisons
	Untested Ideas

