
Fast Integer Multiplication with
Schönhage-Strassen’s Algorithm

Alexander Kruppa
CACAO team at LORIA, Nancy

séminaire Algorithms INRIA Rocquencourt

Contents

Contents

Contents of this talk:

1. Basics of Integer Multiplication

(a) by polynomial multiplication

(b) Evaluation/Interpolation

(c) Karatsuba’s method

(d) Toom-Cook method

(e) FFT and weighted transforms

(f) Schönhage-Strassen’s Algorithm

Alexander Kruppa 2 INRIA Rocquencourt

Contents

2. Motivation for Improving SSA

3. Schönhage-Strassen’s Algorithm

4. High-Level Improvements

(a) Mersenne Transform

(b) CRT Reconstruction

(c)
√

2 Trick

5. Low-Level Improvements

(a) Arithmetic modulo 2n + 1

(b) Cache Locality

(c) Fine-Grained Tuning

6. Timings, Comparisons and Untested Ideas

Alexander Kruppa 3 INRIA Rocquencourt

Integer Multiplication

Integer Multiplication
• Problem: given two n-word (word base β) integers

a =
n−1∑

i=0

aiβ
i,

0 ≤ ai < β and likewise for b, compute

c = ab =
2n−1∑

i=0

ciβ
i

=
n−1∑

i=0

n−1∑

j=0

aibjβ
i+j,

with 0 ≤ ci < β.

Alexander Kruppa 4 INRIA Rocquencourt

by Polynomial Multiplication

by Polynomial Multiplication
• We can rewrite the problem as polynomial arithmetic:

A(x) =
n−1∑

i=0

aix
i

so that a = A(β), likewise for B(x), then

C(x) = A(x)B(x)

=
n−1∑

i=0

n−1∑

j=0

aibjx
i+j

so that c = ab = C(β).

• Double sum has complexity O(n2) (Grammar School Algorithm),
we can do much better

Alexander Kruppa 5 INRIA Rocquencourt

Evaluation/Interpolation

Evaluation/Interpolation
• Unisolvence Theorem: Polynomial of degree d − 1 is determined

uniquely by values at d distinct points

• Since C(k) = A(k)B(k) for all k ∈ R for ring R, reduce the
polynomial multiplication to:

1. Evaluate A(x), B(x) at 2n− 1 points k0, . . . , k2n−2

2. Pairwise multiply to get C(ki) = A(ki)B(ki)

3. Interpolate C(x) from its values C(ki)

Alexander Kruppa 6 INRIA Rocquencourt

Karatsuba’s Method

Karatsuba’s Method
• First algorithm to use this principle (Karatsuba and Ofman, 1962)

• Multiplies polynomials of degree 1: A(x) = a0 + a1x

• Suggested points of evaluation: 0, 1,∞

• A(0) = a0, A(1) = a0 + a1, A(∞) = a1 (same for B(x))

• C(0) = a0b0, C(1) = (a0 + a1)(b0 + b1), C(∞) = a1b1

• c0 = C(0), c2 = C(∞), c1 = C(1)− c0 − c2

• Product of 2n words computed with 3 pointwise multiplications of
n words each, applied recursively: O(nlog2(3)) = O(n1.585)

Alexander Kruppa 7 INRIA Rocquencourt

Toom-Cook Method

Toom-Cook Method
• Generalized to polynomials of larger degree (Toom, 1963, Cook,

1966)

• Product of two n word integers with A(x), B(x) of degree d:
2d + 1 products of n/(d + 1) word integers

• For fixed d: complexity O(nlogd+1(2d+1)), e.g. d = 2: O(n1.465)

• Interpolation/Evaluation costly (O(dn log(d))), cannot increase d
arbitrarily for given n

• Choosing d as function of n allows algorithm in O(n1+ε), for any
ε > 0. Small exponents need very large n

Alexander Kruppa 8 INRIA Rocquencourt

Evaluation/Interpolation with FFT

Evaluation/Interpolation with FFT
• FFT solves problem of costly evaluation/interpolation

• Length-# DFT of a0, ..., a#−1 in R computes ãj = A(ωj
#), 0 ≤ j <

#, with ω# an #-th principal root of unity in R: #-point polynomial
evaluation

• Length-# IDFT computes ai from given ãj: #-point polynomial
interpolation

• With FFT algorithm, algebraic complexity only O(# log(#))

• Problem: R needs to support length-# FFT (preferably # a power
of 2): needs #-th principal root of unity, # a unit

Alexander Kruppa 9 INRIA Rocquencourt

Weighted Transform

Weighted Transform
• Since (ωj

#)
= 1 for all j ∈ N, C1(x)x# + C0(x) has same DFT

coefficients as C1(x) + C0(x): implicit modulus x# − 1 in DFT

• FFT convolution gives C(x) = (A(x)B(x)) mod (x# − 1): cyclic
convolution

• Can change that modulus with weighed transform: compute
C(wx) = (A(wx)B(wx)) mod (x# − 1). Then

A(wx)B(wx) = C1(wx)x#w# + C0(wx)
C(wx) = C1(wx)x#w# + C0(wx) mod (x# − 1)

= C1(wx)w# + C0(wx)

so that C(x) = (A(x)B(x)) mod (x# − w#)

• With w# = −1, we get modulus x# +1: negacyclic convolution, but
need 2#-th root of unity in R

Alexander Kruppa 10 INRIA Rocquencourt

Schönhage-Strassen’s Algorithm: Basic Idea

Schönhage-Strassen’s Algorithm:
Basic Idea
• First algorithms to use FFT (Schönhage and Strassen 1971)

• Uses ring Rn = Z/(2n + 1)Z for transform, with # = 2k | n

• Then 2n/# ≡ −1 (mod 2n +1): so 2n/# ∈ Rn is 2#-th root of unity,
multiplication by powers of 2 is fast! (O(n))

• Allows length # weighted transform for negacyclic convolution

• Write input a = A(2M), b = B(2M), compute C(x) = A(x)B(x)
(mod x# + 1). Then c = C(2M) = ab (mod 2M# + 1)

• Point-wise products modulo 2n + 1 use SSA recursively: choose
next level’s #′, M ′ so that M ′#′ = n

Alexander Kruppa 11 INRIA Rocquencourt

Improvements to Schönhage-
Strassen’s Algorithm

Alexander Kruppa 12 INRIA Rocquencourt

Motivation for Improving SSA

Motivation for Improving SSA
• Integer multiplication is fundamental to arithmetic, used in PRP

testing, ECPP, polynomial multiplication

• Schönhage-Strassen’s algorithm [SSA]: good asymptotic
complexity O(n log n log log n), fast in practice for large operands,
exact (only integer arithmetic)

• Used in GMP, widely deployed

• We improved algorithmic aspects of Schönhage-Strassen

• Validated by implementation based on GMP 4.2.1 [GMP]

Alexander Kruppa 13 INRIA Rocquencourt

Schönhage-Strassen’s Algorithm

Schönhage-Strassen’s Algorithm
• SSA reduces multiplication of two S-bit integers to # multiplications

of approx. 4S/#-bit integers

• Example: multiply two numbers a, b of 220 bits each ⇒ product
has at most 221 bits

1. Choose N = 221 and a good #, for this example # = 512. We
compute ab mod (2N + 1)

2. Write a as polynomial of degree #, coefficients ai < 2M with
M = N/#, a = a(2M). Same for b

3. ab = a(2M)b(2M) mod (2N + 1), compute
c(x) = a(x)b(x) mod (x# + 1)

4. Convolution theorem: Fourier transform and pointwise
multiplication

Alexander Kruppa 14 INRIA Rocquencourt

Schönhage-Strassen’s Algorithm

5. FFT needs #-th root of unity: map to Z/(2n + 1)Z[x] with # | n.
Then 22n/# has order #

6. We need 2n + 1 > ci: choose n ≥ 2M + log2(#) + 1

7. Compute c(x) = a(x)b(x) mod (x# + 1), evaluate ab = c(2M)
- and we’re done!

8. Benefits:
- Root of unity is power of 2

- Reduction mod(2n + 1) is fast

- Point-wise products can use SSA recursively without
padding

Z =⇒ Z2N+1 =⇒ Z[x] mod (x# + 1) =⇒ Z2n+1[x] mod (x# + 1) =⇒ Z2n+1
!"

n
small?

#####

$$$$$

$$$$$

#####

No, recurse

!
Yes, multiply

Alexander Kruppa 15 INRIA Rocquencourt

High-Level Optimizations

High-Level Optimizations

Alexander Kruppa 16 INRIA Rocquencourt

Mersenne Transform

Mersenne Transform
• Convolution theorem implies reduction mod(x# − 1)

• Convolution mod(x# + 1) needs weights θi with ord(θ) = 2#,
needs # | n to get 2#-th root of unity in Rn

• Computing ab mod (2N + 1) to allows recursive use of SSA, but is
not required at top level

• Map a and b to Z/(2N − 1)Z instead:
compute c(x) = a(x)b(x) mod (x# − 1)

• Condition relaxes to # | 2n. Twice the transform length, smaller n

• No need to apply/unapply weights

Alexander Kruppa 17 INRIA Rocquencourt

CRT Reconstruction

CRT Reconstruction

a, b

Z/(2N + 1)Z

Convolution

ab

with 2N + 1 > ab

a, b

Z/(2rN + 1)Z Z/(2sN − 1)Z

Convolution Convolution

CRT

ab

with (2rN + 1)(2sN − 1) > ab

Alexander Kruppa 18 INRIA Rocquencourt

CRT Reconstruction

• At least one of (2rN−1, 2sN +1) and (2rN +1, 2sN−1) is coprime

• Our implementation uses (2rN +1, 2N−1) : always coprime, good
speed

• Smaller convolution, finer-grained parameter selection

Alexander Kruppa 19 INRIA Rocquencourt

The
√

2 Trick

The √
2 Trick

• If 4 | n, 2 is a quadratic residue in Z/(2n + 1)Z

• In that case,
√

2 ≡ 23n/4− 2n/4: simple form, multiplication by
√

2
takes only 2 shift, 1 subtraction modulo 2n + 1

• Offers root of unity of order 4n, allows # | 2n for Fermat transform,
| 4n for Mersenne transform

• Sadly, higher roots of 2 usually not available in Z/(2n + 1)Z, or
have no simple form

Alexander Kruppa 20 INRIA Rocquencourt

Low-Level Optimizations

Low-Level Optimizations

Alexander Kruppa 21 INRIA Rocquencourt

Arithmetic modulo 2n + 1

Arithmetic modulo 2n + 1

• Residues stored semi-normalized (< 2n+1), each with m = n/w
full words plus one extra word ≤ 1

• Adding two semi-normalized values:
c = a[m] + b[m] + mpn_add_n (r, a, b, m);
r[m] = (r[0] < c);
MPN_DECR_U (r, m + 1, c - r[m]);

Assures r[m] = 0 or 1, c− r[m] > r[0]⇒ r[m] = 1 so carry
propagation must terminate.

• Conditional branch only in mpn_add_n loop and (almost always
non-taken) in carry propagation of MPN_DECR_U

• Similar for subtraction, multiplication by 2k

Alexander Kruppa 22 INRIA Rocquencourt

Improving Cache Locality

Improving Cache Locality
• SSA behaves differently than, say, complex floating point FFT:

elements have hundreds or thousands of bytes instead of 16

• Recursive implementation preferable, reduces working data set
size quickly, overhead small compared to arithmetic

• Radix 4 transform fuses two levels of butterflies on four inputs. Half
as many recursion levels, 4 operands usually fit into level 1 cache

%
%&

'
'(

'
'(

%
%&ai

ai+k

ai + ai+k

wk(ai − ai+k)

Radix-2 butterfly

%%&

''(

''(

%%&

%%&

''(

''(

%%&

%%&

''(

''(

%%&

%%&

''(

''(

%%&

###$$$

)

)
)

)

)

)
)

)

Radix-4 butterfly

Alexander Kruppa 23 INRIA Rocquencourt

Improving Cache Locality

• Bailey’s 4-step algorithm (radix
√

transform)

- groups half of recursive levels into first pass, other half into
second pass

- Each pass is again a set of FFTs, each of length
√

#

- If length
√

transform fits in level 2 cache: only two passes
over memory per transfrom

- Extremely effective for complex floating-point FFTs, we found it
useful for SSA with large # as well

• Fusing different stages of SSA

- Do as much work as possible on data while it is in cache

- When cutting input a into M -bit size coefficients a =∑
0≤i<# ai2iM , also apply weights for negacyclic transform and

perform first FFT level (likewise for b)

- Similar ideas for other stages

Alexander Kruppa 24 INRIA Rocquencourt

Fine-Grained Tuning

Fine-Grained Tuning
• Up to version 4.2.1, GMP uses simple tuning scheme: transform

length grows monotonously with input size

• Not optimal: time over input size graphs for
different transform lengths intersect multiple times:

 0.00013

 0.00014

 0.00015

 0.00016

 0.00017

 0.00018

 0.00019

 0.0002

 700 750 800 850 900

Se
co

nd
s

Size in 64-bit words

K=32
K=64

Alexander Kruppa 25 INRIA Rocquencourt

Fine-Grained Tuning

• New tuning scheme determines intervals of input size and optimal
transform length

• Also determines pairs of Mersenne/Fermat transform lenghts for
CRT

• Time-consuming (ca. 1h up to 1M words) but yields significant
speedup

Alexander Kruppa 26 INRIA Rocquencourt

Timings and Comparisons

Timings and Comparisons
• Our code is about 40% faster than GMP 4.2.1 and

Magma 2.13-6, more than twice as fast as GMP 4.1.4

 0

 10

 20

 30

 40

 50

 60

 70

 80

1.5e71.25e71e77.5e65e62.5e6

Se
co

nd
s

Size in 64-bit words

GMP 4.1.4
Magma V2.13-6

GMP 4.2.1
new GMP code

Alexander Kruppa 27 INRIA Rocquencourt

Timings and Comparisons

• New code by William Hart for FLINT is competitive with ours, up to
30% faster for some input sizes

• Prime95 and Glucas implement complex floating point FFT for
integer multiplication, mostly for arithmetic mod 2n − 1 (Lucas-
Lehmer test for Mersenne numbers)

- Considerably faster: Prime95 10x on Pentium 4, 2.5x on
Opteron; Glucas 5x on Pentium 4, 2x on Opteron

- Danger of round-off error due to floating point arithmetic

- Provably correct rounding possible with about 2x the transform
length

- Prime95 written in assembly, non-portable

Alexander Kruppa 28 INRIA Rocquencourt

Untested Ideas

Untested Ideas
• Special code for point-wise multiplication:

- Length 3 · 2k transform

- Karatsuba and Toom-Cook with reduction mod 2n + 1 in
interpolation step

- Short-length, proven correct complex floating-point FFT

• Truncated Fourier transform

• Fürer’s new algorithm has lower theoretical complexity
O(n log(n)2log∗(n)). How fast is it in practice?

Alexander Kruppa 29 INRIA Rocquencourt

REFERENCES

References

[GMP] T. Granlund, The GNU Multiple Precision Arithmetic library,
http://gmplib.org/

[SSA] A. Schönhage and V. Strassen, Schnelle Multiplikation großer
Zahlen, Computing 7 (1971)

Source tarball with new code available at
<http://www.loria.fr/˜kruppaal>

Alexander Kruppa 30 INRIA Rocquencourt

	Title slide
	Contents
	Integer Multiplication
	by Polynomial Multiplication
	Evaluation/Interpolation
	Karatsuba's Method
	Toom-Cook Method
	Evaluation/Interpolation with FFT
	Weighted Transform
	Schönhage-Strassen's Algorithm: Basic Idea
	
	Motivation for Improving SSA
	Schönhage-Strassen's Algorithm
	High-Level Optimizations
	Mersenne Transform
	CRT Reconstruction
	The 2 Trick
	Low-Level Optimizations
	Arithmetic modulo 2n+1
	Improving Cache Locality
	Fine-Grained Tuning
	Timings and Comparisons
	Untested Ideas

