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start at (0,0)
end at (0,0)

do not leave N2

vV v . v.Y

consist only of steps from
some fixed step set
Sc{=No1/
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Question: How many such walks of length n are there?
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For S ={,,«, |}, this number is

Fn) = { e () =3k
0 if 3tn
Question: How to prove this?
Answer: Two possibilities
a) with thinking
b) without thinking
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Proving Kreweras’ Theorem without thinking

Let f(n;4,7) be the number of walks in N2 from (0,0) to (7, 7)
with steps in { 7, —, | }.

Let N, I, J denote the shift operators for n, 1, j, respectively.
Then f(n;i,j) is killed by an operator of the form

P(N,I,J,n,i,5) =R(N,n)
RN, T, J,n,4, )
1 §Ro(N, I, J,n,i,7)

(found and proven by the computer).
Therefore R(N,n) kills f(n;0,0).
As R(N,n) also kills the RHS and initial values agree, we are done.
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41848254 + 15184852 ni — 259606jni — 407910n4i — 969246i + 344805 — 18n* — 207332;3 —
20405n3 — 457n3 + 27523252 + 1699652n2 — 20824jn> — 4167n? + 593825 — 42928;%n +
1434705%n — 415865n — 15948n — 21060) NS — 61(18743 + 884n24i2 + 14678ni2 + 57967i% +
884n3i — 163252 — 1768jn2i + 17095024 — 11997557 — 29768 ni + 113065ni + 254940 + 1768;5° +
2678452 — 800jn> — 563855 4+ 3776j2n — 14103jn)N® + J(7696i* — 26936;i° + 135368ni% +
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23381)N* — 5412(252in? — 272jn2 4 2760in — 2776jn + 7377i — 6752)N* + 3J2(7288:* +
7288513 — 5466;52i2 — 67072n2i% — 840272ni2 — 263169472 — 3644534 + 1007805n>i + 72496125 +
388375951 + 1256708 jni + 896840ni + 27170767 + 182254 — 134206952 — 35188;2n? — 45644jn> —

17090105 — 436808;%n — 563062jn) N4 — 54(2i — j)(i + j + 2)J3(n + 4)(34n + 211)N3 4+ . ..
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63827n%i — 4516411 — 23613652 ni + 1376755ni + 202284ni + 29349i — 40854 + 20766053 +
30605n> + 22215952 — 34052;52n? — 5893;n> + 1493825 4 69968;j°n — 26777;j2n + 5901jn) N2 4+
97215J(n +2)(179n 4 384) N + 583212 (n + 2)(63ni + 1047 — 685 — 68jn) N — 324J2 (n + 2)(2044> —
306;i2 — 16768ni2 — 50202i2 — 306521+ 7380054+ 251955ni+ 18124ni+ 525361+ 2045° — 2552452 —
330095 — 8797j%n — 11411jn)N + 49572(2i — §)(i 4+ j 4+ 2)J3(n + 1)(n + 2) — 148716I5J2(n +

1)(n + 2) — 99144713 (i — 25)(n + 1)(n 4 2) 4+ 1458(n + 1)(n + 2)(9n> + 80n + 1367 — 68; + 159)



R(N,n)

(18n* + 45703 + 4167n2 + 15948n + 21060) N©
—9(108n* + 2013n3 + 13788n2 + 41001n + 44478) N3
+1458(n + 1)(n + 2)(n? + 80n + 159)



Analogs for Different Step Sets

step set number of closed paths

H = © 00 N O O & W N =

= O
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Gessel's Conjecture

For S = {«—,—, 7, /}, it seems that

FGOL2e e
f) = e, fn=2k
0 if n is odd

We hoped to find a certifying operator P(N, I, J,n,i,j) for
proving this conjecture.

But the corresponding computations were too expensive.

The conjecture remains open.
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Recall: Integration of Rational Functions

INPUT: f € k(z) ) )
OUTPUT: g € k(x), v1,---,Vn € k, P1,---,Dn € k(x) with

/f =g +mlog(pi) + -+ vnlog(pn).
ALGORITHM (Sketch):
Polynomial Part — Rational Part — Logarithmic Part

Find g € k(z) and u,v € k[x] with v squarefree such that

a U
— =D —.
b g+v

g enters the rational part. We are left with 7.
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Recall: Integration of Rational Functions

INPUT: f € k(z) )
OUTPUT: g € k(x), 71, .-,V €k, D1, ..., Pn € k(z) with

/f =g+ 71log(p1) + -+ + Ynlog(pn).

ALGORITHM (Sketch):

Polynomial Part — Rational Part — Logarithmic Part
Let 71,...,7n € k be the distinct roots of

resz(u — tDv,v) € klt]

and p; = ged(u — ;Dv,v) € k[z]. Then ¥ =3 Dp};i'
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Generalizations

/$2—x+1 /«12_.7}—’-‘/1—1‘2

LT g =2
3 +2x—3 v

l

x2 1
/ e z +logx d 7
3 —log(x? + 1)

Algebraic functions: Davenport’s or Trager's algorithm



Generalizations

2?2 —x+1 22— x4+ V1 — a2
——dz =7 dx =7
342 —3 1++vV1—22
e’”Q—x—i—logx —x—i—logw
3 5 dx =7 T =
r3 —log(z? + 1) \/:p3 log(z? + 1)

Arbitrary elementary functions: Bronstein's algorithm



Generalizations

/’ e + log x
€T
—log(z2 +1)

Today: algebraic functions

/a:Z—x—l—\/l—a:zd )

€Tr =

1+ v1— 22

/ "—J—i—loguv .
Vo3 —log(z? + 1)
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Algebraic Functions

Our objects of interest:

€ k(@)lyl/(m)

m € k[, y] irreducible over k(z)

Note: There are two algebraic functions:
y (the generator of the field) and
f (expressed in terms of = and y)
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THEOREM (Liouville) g, ~;, p; exist <= [ f is elementary
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Integration of Algebraic Functions

INPUT: f € k(z)[y]/(m)

OUTPUT: g € k(z)[y]/(m), 71, ,m € K,
D1, .-, Pn € k(x)[y]/{(m) such that

/f =g+ 1log(p1) + -+ + vnlog(pn)

or L if no such data exists.

ALGORITHM (Trager, sketch)
“Polynomial” Part — Algebraic Part — Logarithmic Part

Choose a regular point xg and perform a change of variables
1 1 !
T g T G dr

(Undo the substitution in the end!)



Integration of Algebraic Functions

INPUT: f € k(z)[y]/(m)

OUTPUT: g € k(z)[y]/(m), 71, ,m € K,
D1, .-, Pn € k(x)[y]/{(m) such that

/f =g+ 1log(p1) + -+ + vnlog(pn)

or L if no such data exists.
ALGORITHM (Trager, sketch)
“Polynomial” Part — Algebraic Part — Logarithmic Part

Write the new integrand as f = Dg—+ h such that h only has simple
poles
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INPUT: f € k(z)[y]/(m)

OUTPUT: g € k(z)[y]/(m), 71, ,m € K,
D1, .-, Pn € k(x)[y]/{(m) such that

/f =g+ 1log(p1) + -+ + vnlog(pn)

or L if no such data exists.

ALGORITHM (Trager, sketch)
“Polynomial” Part — Algebraic Part — Logarithmic Part
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The Logarithmic Part

Given h € k(x)[y]/{m) with only simple poles.

> Write h = & with u € k[z,y] and v € k[z] and consider
R(t) := resg(resy(u — tDv, m),v) € k[t].

> Let y1,...,v, € k be a basis for the splitting field of R.

» For each ~;, construct an associated divisor a; specifying the
singularities of a potential logand for ;.

» For each a;, decide whether some power of it is principal.

> Any divisor with a] = (p) gives rise to a contribution
%fyi log(p) to the logarithmic part.

» If some of the divisors do not have a principal power, then
[ his not elementary.
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» Hardly any CAS has a complete implementation of this
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Problem

Hardly any CAS has a complete implementation of this
Because the details are difficult and time consuming
Is there a simple alternative?

How about the rational case?
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Czichowski’'s Observation

Let u/v € k(x) be such that degu < degv and v is squarefree.
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Then G = {(t — 3)(2t — 1), (2t — 1)(z — 1), 52 + 6t — 23}.
Residues: v1 = 3, 72 = %
Logands: p; =z — 1, py = 52° + 16 — 23 = 5(2 — 4)

Solution: [ % = 3log(z — 1) + & log(2? — 4)
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Then G = {(t — 3)(2t — 1), (2t — 1)(x — 1), 52> + 6t —

Note: Gb((G) + (t —3)) = {t — 3,z — 1}
Gb((G) + (2t — 1)) = {2t — 1,22 — 4}

In general, if ¢ is an irreducible factor of ¢y, then

Gb({c,v,u —tDv)) = {c(t),p(x,t)} < k[z,1]

for p such that p(x,v) = ged(v,u — yDv) when ¢(v)

23}

= 0.
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» Does this work also for algebraic functions?

» Answer: Not always, but often.
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Observation

It is clear that ¢ will appear in the Grobner basis of
(v,u — tDv, m).

There is no reason that p will appear there as well.
In fact, it need not. But it often does.

If not, and if ¢ is not irreducible, it is promising to consider
(q,v,u — tDv, m) for each q | c separately.

If this does not help, consider ideal powers
(@) + (v,u — tDv)" + (m) fori =2,3,4, ...

If this also does not help, give up.
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G := GrobnerBasis({v,u — tDv,m}); int =0
for all irreducible factors ¢ of min G do
A:={1}
for n from 1 to 12 do
A := GrobnerBasis((A - G) U {q,m})
for all pin A do
if A = GrobnerBasis({g,p, m}) then
int :=int + Z'y:q('y):[) % log(p(ac, Y, 7))
next ¢
return int
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» Unfortunately, we have no theoretical results about our
method.

> Instead, we compared it to Axiom, Maple, and Mathematica.

» We applied the integrators to 1000 integrals involving
y = V23 + 1 and 1000 integrals involving y = (22 + 1)1/3.

» A typical integral is
/f =11 —iV47) log(m — i1 —ivaAnVad +1- 13 +i\/zﬁ))
+ 11 +ivaT) log(x 14 iVAVaR 113 - i\/zﬁ))
+2log(z — 2V 23 + 1+ 3)
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