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Context: nearest-neighbour walks in N?

> Set of admissible steps S C {/, —, "\, T, /" —, \u |}.
> G-walks = walks in N2 starting at (0, 0) and using steps in &.

> f(n;i,j) = number of G-walks ending at (7, /) and consisting of
exactly n steps. Complete generating function

Flexy) = Y (3 mipivl)er <l vl

n=0 ij=0

Questions: Starting from &, what can be said about F(t;x,y)?
Is it algebraic, or holonomic transcendental, or non-holonomic?

F(t;1,1) ~» number of walks with prescribed number of steps;
F(t;0,0) ~» number of walks returning to the origin (excursions);
F(t;1,0) ~» number of walks ending on the horizontal axis.



Examples: Kreweras and Gessel walks

Kreweras walks: G-walks with & = {|, <, '}
Gessel walks: S-walks with & = {7, /, +, —}
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Example: A Kreweras excursion of length 24.
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Main results

Theorem (Kreweras 1965; 100 pages combinatorial proof!)
1/3 2/3 1], 3 G
K(t; = 3F; 2 .
(£:0.0) 32( 3/2 2 ”) Z(n+1 2t 1)’
Theorem (Gessel's conjecture; Kauers, Koutschan, Zeilberger 2008)

G(t;0,0)=3F2<5/§/31/22 1 16t2> 2(55/3 15 (4)%"

Question: What about K(t; x, y) and G(t;x,y)?

Theorem (Bousquet-Mélou 2005) K(t; x, y) is algebraic.

Theorem (B. & Kauers 2008) G(t; x, y) is algebraic.
In particular, g(n;i,j) is holonomic for any pair (i,;) € N2.

— Effective, computer-driven, discovery and proof.



Methodology

Experimental mathematics approach:

(S1) high order expansions of generating power series;
(S2) guessing differential and/or algebraic equations they satisfy;

(S3) empirical certification of the guessed equations (sieving by
inspection of their analytic, algebraic, arithmetic properties);

(S4) rigorous proof, based on (exact) polynomial computations.



Step (S1): high order series expansions

f(n; 1, j) satisfies the recurrence with constant coefficients
f(n+1,i,j) = Z f(nyi—u,j—v) for ni,j>0
(u,v)e6s

+ init. cond. f(0;/,j) = do,ij and f(n; —1,j) = f(n;i,—1) =0.

Example: for the Kreweras walks, ‘

k(n;i,j)=k(n—1;i+1,)) *
+k(n—1;i,j+1) -
+k(n—1;i—1,j-1)

The recurrence is used to compute F(t;x, y) mod tN for Iarge N.
K(t;x,y) =1+ xyt + (Py% +y + x)t2 + (3y3 + 2xy? + 2x%y + 2)¢3
+ (x*y* 4 3x%y3 +3x3y? + 2y% + 6xy + 2x2)t*
+ (x50 + a3yt 4 4ax*y® + 5xy3 4+ 12x%y2% 4+ 5x3y + 8y + 8x)t° +



Step (S2): guessing equations for F(t; x,y), a first idea

In terms of generating series, the recurrence on k(n; i, ) reads

(v — tix+y + X3y K(t: x, y)
=xy — tx K(t;x,0) — ty K(t;0, y) (KerEq)

> This kernel equation is simply a multivariate analogue of

(1—t— t2) . Z&nt” =1, where §, are the Fibonacci numbers.
n>0

> A similar kernel equation holds for F(t; x, y), for any G-walk.
Corollary. F(t; x, y) is holonomic (resp. algebraic) if and only if
F(t;x,0) and F(t;0, y) are both holonomic (resp. algebraic).

> This simplification is crucial: equations for G(t; x, y) are huge.



Step (S2): guessing equations for F(t; x,0) and F(t;0,y)

Task 1: Given the first N terms of S = F(t;x,0) € Q[x][[¢t]],
search for a differential equation satisfied by S at precision N:

r

Ly0(S) = c(x, t) T

ds
+---+a(x, t)-E—Fco(x, t)-S =0 mod tV.
Task 2: Search for an algebraic equation Pxo(S) =0 mod tV.

» Both tasks amount to linear algebra in size N over Q(x).

» In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

» (Right) gcds of several candidates provide minimal equations.



Step (S2): guessing equations for K(t; x,0)

d
The guessed operator of order 4 in Dy = e degree(14,11) in(t, x)

Lyo=13- (3t —1)- (9t + 3t + 1) - (3t% + 24t>x> — 3xt — 2x?)-
(16t2x° + 4x* — 72t x® — 18x3t + 5t2x% + 18xt3 — 9t*).
(423 — 2 +2xt — x*)- D} + - -

is such that £, o(K(t;x,0)) = 0 mod t1%.
The guessed polynomial of tridegree (6,10,6) in (T, t, x)
Pro = x°t10TC —3x*t8(x — 2t) T+

7
+ x*t° (12t2 +3t%x — 12xt + 2x2) T 4.

is such that P, o(K(t; x,0), t, x) = 0 mod t1%.



Step (S2): guessing equations for G(t; x,0) and G(t;0, y)

For Gessel walks, using N = 1000 terms of G(t;x, y), we guessed
» L 0: order 11 in Dy, bidegree (96, 78) in (t, x), 61 digits coeffs
> Lo,,: order 11 in Dy, bidegree (68,28) in (t,y), 51 digits coeffs

such that L, o(G(t;x,0)) = Lo,,(G(;0,y)) = 0 mod £1900,

degree

e For a fixed value xy, and modulo a prime p,
many (non-minimal) operators in Z,[t](D;) for
G(t; x0,0) can be guessed by Hermite-Padé.

e Still: reconstructing from one of them an op-
erator in Q[t, x](D;) for G(t; x,0) is too costly.

e However, the reconstruction (wrt x) is feasible
if applied to the minimal-order operator = gcrd.

> Guessing Ly by undetermined coefficients
would have required solving a dense linear sys-
tem 91956 x 91956 with ~1000 digits entries!
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Step (S2): guessing equations for G(t;x,y)?

Feasible in principle: kernel equation + closure by differential Iclm.

e Obstacle: this Iclm has order 20 in Dy, tridegree (359, 717,279)
in (t,x,y) — size of 1.5 billion integer coefficients (!)

e Thus: at this point, we had guesses for differential equations for
G(t;x,0) and G(t;0,y), but no proof that they are correct and no
hope to compute a candidate differential equation for G(t;x, y).

> Remember: it was believed (e.g. by Gessel and Zeilberger, who
popularized the problem) that G(t;x, y) is not algebraic.

> This explains why no one (including us) tried — at this stage — to
search for algebraic equations. Worse: no one even remarked that

Gessel's expression 3F, (5/6 1/2 1

5/3 2 ’16t2> for excursions is algebraic.



Step (S3): empirical certification of guesses

Provide convincing evidence that the candidate £, o is correct:

1. Size sieve: L4 o has reasonable bit size compared to an
artefact solution of the Hermite-Padé approximation problem.

2. Algebraic sieve: High order series matching.
Lo verifies L, o(F(t;x,0)) = 0 mod >V

3. Analytic sieve: singularity analysis.
Ly o is Fuchsian (all of its singular points are regular singular).

4. Arithmetic sieve: Ly o is globally nilpotent (see below).



Step (S3): G-series and global nilpotence

Def. A power series 3 - §2t" in Q[[t]] is called a G-series if it is
(a) holonomic; (b) analytic at t=0; (c) 3C >0, lem(by, ..., by) < C".

Examples: »F (af‘t), «, 3,7 € Q; algebraic functions (Eisenstein).

Thm. (Chudnovsky 1985) The minimal-order differential operator
annihilating a G-series is globally nilpotent: for almost all prime
numbers p, it right-divides Df“ modulo p, for some u € N.

Examples: t(1—t)D2 + (v — (e + 8+ 1)t)D; — aft; algebraic resolvents.
Thm. (B. & Kauers) If F(t; x,0) is holonomic, then it's a G-series.
> The guessed operators for K(t; x,0), G(t;x,0), G(t;0,y) pass

this arithmetic test: they are all globally nilpotent.
> And, unexpectedly, even more. ..



Step (S3): Grothendieck’s conjecture and
the big surprise

Conjecture (Grothendieck) L(S) = 0 possesses a basis of algebraic
solutions if and only if £ globally nilpotent with u = 1.

> Big surprise: the guessed operators for G(t; x,0) and G(t;0, y)
share this property for 5 < p < 100 = this strongly indicates that
G(t;x,0) and G(t;0,y), and thus G(t; x, y), should be algebraic!

Once we suspect algebraicity of G(t; x,0) and G(t;0,y), we guess
candidates for annihilating polynomials

» Py o in Z[x, t, T] of tridegree (32,43,24) in (x, t, T), 21 digits
»Po,, in Zly, t, T] of tridegree (40, 44,24) in (y, t, T), 23 digits

such that
Puo(x, t, G(t;x,0)) = Po,y(x, t, G(t;0,y)) = 0 mod £1200,



Step (S4): warm-up — Gessel excursions

Theorem G(t;0,0) = Z W(M)z" is algebraic.
—0 n n

Proof 1: This 3F, series is a o F7 series in disguise:

(P83 o)< £ () )

Schwarz's classification of algebraic »F1's allows to conclude.

Proof 2: Guess a polynomial P(T,t) in Q[T, t] and then prove
that P admits the power series g(t) = G(1/t;0,0) as a root.

1. Such a P can be guessed from the first 100 terms of g(t).
2. Implicit function theorem: 3! root r(t) € Q[[t]] of P.
3. r(t)=>_,2 &nt" being algebraic, it is holonomic, and so is (g):

(n+2)(3n+5)gn+1 — 4(6n+5)(2n+ 1)g, = 0, g = 1.

— solution g, = %16”, thus g(t) = r(t) is algebraic.



Step (S4): rigorous proof for Kreweras walks

. —t—/x2— 2(1—4x3
1. Setting yo(t.x)= x—t—4/x2=2tx+1t2(1—4x3)

o5 in the kernel equation

(xy — (x +y + x°y?)t)K(t; x, y) = —xy + xtK(t; x,0) 4+ ytK(t; 0, y)

|
=0
shows that U = K(t; x, 0) satisfies the reduced kernel equation

‘ x-yo—x-t-U(t,x)=yo-t-U(t, yo) ‘ (RKerEq)

2. U= K(t; x,0) is the unique solution in Q[[x, t]] of (RKerEq).
3. The guessed candidate Py o has one solution H(t, x) in Q[[x, t]].

4. Resultant computations + verification of initial terms
—> U = H(t, x) also satisfies (RKerEq).

5. Uniqueness: H(t,x) = K(t;x,0) = K(t; x,0) is algebraic!



Algebraicity of Kreweras walks: our Maple proof in a nutshell

[bostan@venus ~1$ maple

IN/1 Maple 11 (X86 64 LINUX)
NI |/1_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2007
\ MAPLE / All rights reserved. Maple is a trademark of
| S, > Waterloo Maple Inc.

| Type 7 for help.

*

high order expansion (S1)
st,bu:=time() ,kernelopts(bytesused) :
f:=proc(n,i,j)
option remember;

if i<0 or j<O0 or n<0 then 0

elif n=0 then if i=0 and j=0 then 1 else 0 fi

else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi
end:
prec:=80:
S:=series(add(add(f(k,i,0)*x"i,i=0..k)*t"k,k=0..prec),t,prec-1):
guessing (S2)
libname:=".",libname:gfun:-version();

3.35

v v

vV o# VvV

gfun:-seriestoalgeq(S,Fx(t)):
P:=collect (numer (subs (Fx(t)=T,%[11)),T):
rigorous proof (S4)
ker := (T,t,x) -> (x+T+x"2%T"2)*t-x*T:
unapply (P,T,t,x):
resultant(pol(z-T,t,x) ,ker(t*z,t,x),z):
subs (T=x*T,resultant (numer (pol(T/z,t,z)) ,ker(z,t,x),z)):
normal (primpart (p1,T)/primpart(p2,T));
1
nops (gfun:-algeqtoseries(pl,t,T,4,true));
1
time (in sec) and memory consumption (in Mb)
trunc(time () -st) ,trunc((kernelopts(bytesused)-bu)/1000°2);
15, 657

VVVVYV#VYV
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Step (S4): rigorous proof for Gessel walks

Two difficulties: G(t;x,y) # G(t;y,x) and G(t;0,0) occurs in (KerEq)

poly(x,y, t)G(t; x,y) = xy+tG(t;0,0)—(1+y)tG(t;0,y)—tG(t; x,0)
—_———

! 2 4 2
=0 = yo(t,x) =0+ Lt F 2 4 X3 4o

1 +1)3 2(y+1)°
or xo(t,y):0+%t+(yy2)t3+ (yy3)t5+---
This gives two equations connecting G(t;x,0) and G(t;0, y):

G(t; x,0) = xyp/t + G(t;0,0) — (1 + y0)G(t; 0, yo)
(1+y)G(t;0,y) = yxo/t + G(t;0,0) — G(t; x0,0)

For fixed G(t;0,0), they uniquely define G(t; x,0) and G(t;0,y).

> Resultant size: degy = 48, deg, = 90, deg, = 64, digits = 47
— fast algorithms needed (B., Flajolet, Salvy & Schost 2006).



Conclusion

1. Guess'n'Prove approach based on modern CA algorithms.

2. Brute-force approach and/or use of naive algorithms = hopeless.

E.g. size of algebraic equations for G(t; x, y) =~ 30Gb.

. Going further: experimental classification of 2D and 3D walks:

(B. & Kauers FPSAC'09) — 3500 cases treated; = 4% holonomic.
Matches the results of Bousquet-Mélou and Mishna (2D).

. Remarkable properties discovered experimentally: explanation?

4.1 algebraic cases: solvable Galois groups + genus 0, 1 and 5(!)

3 f\j ) + 16t(2t+3)+27U(t)2+3

DT e (o)

where  U(t) = \/1+4¢1/3(at +1)1/3/(at — 1)4/3.
4.2 transcendental holonomic: operators factor as L(2) - L(ll) B Lgl)
— iterated integrals of »f1's (Dwork’s conjecture)

(1 —1272)(472 + 1 5/4 7/4| 647%
Fp, (50.0)= t2/ ((1_4:%5/2 )2F1</2/ m)d“

4.3 all: [t"] F(t;1,1) grows like kn“p" for k € R, a € Q_, p € Q.
Moreover: p < |G|, with equality iff drift(&) = > . s € N2



Experimental classification of 2D walks with holonomic F(t;1,1)

OEIS Tag Sample step set Equation sizes OEIS Tag Sample step set Equation sizes
A000012 e 1,0 1,1 | 1,1 A000079 e 1,0 1,1 | 1,1
A001405 2,1 2,3 | 2,2 A000244 1,0 1,1 | 1,1
001006 2,1 2,3 | 22 A005773 2,1 2,3 | 22
A126087 31 2,5 | 2,2 A151255 6,8 | 4,16 -
A151265 6, 4 4,9 | 68 A151266 7,10 | 516 -
A151278 7.4 | 412 | 6,8 A151281 31 2,5 | 22
A005558 2,3 3,5 - A005566 2,2 3,4 -
A018224 2,3 3,5 - A060899 2,1 2,3 | 22
/060900 2,3 3,5 | 89 A128386 3,1 2,5 | 22
A129637 31 2,5 | 2,2 A151261 58 | 4,15 -
A151282 3,1 2,5 | 22 A151291 6,10 | 515 -
A151275 9,18 | 524 - A151287 7,11 | 5,19 -
A151292 3,1 2,5 | 22 A151302 9,18 | 524 -
A151307 8,15 | 5,20 - A151318 2,1 2,3 | 22
A120400 2,1 2,3 | 22 A151297 7,11 | 5,18 -
A151312 4,5 3,8 - A151323 2,1 2,3 | 44
A151326 7,14 | 518 - A151314 9,18 | 524 -
A151329 9,18 | 524 - A151331 3.4 | 36 -

Equation sizes = {order, degree}(rec, diffeq, algeq).




Experimental classification of 2D walks with holonomic F(t

OEIS Tag | Steps | Equation sizes OEIS Tag | Steps | Equation sizes Asympoti
A000012 o | L 1 4000079 | 0 [ o | 1 | on
Aoogos | 1T |20 | 23 |22 V2 2 A000244 | T3 o | L | 3n
D Ve
A001006 | 7. | 21 | 2.3 |22 3‘? . a0s773 | 1T 2 | 23 | 22 J? L
20(3) w72 () Vi
.. 3n/2 . 3n/2
A126087 | * 31|25 |22 12‘]/52 - aisioss | Do | 68 | 6| - | 2222
(1) n/? T
2V3 3" 3 3n
Al51265 6.4 | 49 |68 —{3— Als1266 | ¢ [ 7,10 | 516 | - Lﬁ‘—
Ty w3/ (L) v
asis | e | 74 |42 |6 _3V8 3 atsiasl | S8 | | a5 |22 Lgn
* Var(d) nd/4 2
Pel 2| as | - s A005566 | soe | 2,2 | 34 | - a4
T n2 T n
.. n n
Aots224 | D1 23 | as | - e A060899 21 | 23 |22 ‘/? kS
T () Vi
e 4V3 an 6v2 2m37/2
A060000 | 3% | 23 | 35 |89 ifyf A128386 31| 25 |22 ’{ Ll
30(%) n2/3 T(3) n*/?
3 gngn/2
A129637 31|25 |22 Lo Alsizel | B | sy |ans | o | 2EEEZ
2 EE)
2582 pn . 4 1
Alsiog2 | ¢ 31|25 (20| AB B s | o 60 | 505 | - 4
23/1(L) n3/2 30(3) v
o 12v/30 (vV24)" AT/2 (24)"
Als127s | 310 [ 018 | 5,24 | - 30 (V24) Al51287 2| s | o | YBAZCA"
S
¥30°D3/? pr
Als1202 | 3 a1 | as |20 VBCEDYVEDN s | 20 os | s | -
Als1307 | 5.8 | 815|520 | - AlSI318 21 | 23 |22
A120400 | Sos | 21 | 23 |22 Al51297 700|508 | - >
T
.o 33/4 gn
Asi3iz | 33 [ as | 38 | - Al51323 21 | 23 |44 ﬁ% o
I(3) nd/t
EFT/2 (2F)"
Al51326 704 | 508 | - Al51314 9.18 | 5,24 | - )
30(2 5V%r n?
3 n
Al51329 918 | 5,24 | - 87 Al51331 34 | 36 | - s
37

30(3) v

1

1,1)



Experimental classification of holonomic transcendental 3D walks

OEIS Tag Step sets Equation sizes OEIS Tag Step sets Equation sizes

A148060 sore i 9,17 5, 28 A148438 le: 7, 10 5,17
A149090 s 9,17 5,28 A149589 10,21 | 6,29

PR

A005817 2,2 3,4 A148005 58 4,15
A148052 7,18 6, 27 A148068 7,17 6,25
A148072 12,57 | 10,69 A148162 4,3 3,6

A148284 14,57 | 10,71 A148331 11,43 | 9,53
A148507 4,6 4,11 A148525 7,16 6,25
A148548 7,19 6,28 A148689 8,25 8,31
A148703 4,3 3,6 A148790 6, 12 5,18
A148934 55 4,11 A149279 14,62 | 10,75
A149290 11,53 | 9,61 A149363 7,16 6,24
A149632 7,11 5, 16 A149713 8,22 7,29
A150054 12,39 | 9,52 A150370 14,62 | 10,75
A150410 4,6 4,11 A150471 12,33 | 8,42
A150499 14,48 | 9,61 A150764 7,13 6,19
A150950 8,23 7,29 A151053 14,38 | 9,48

Equation sizes = {order, degree}(rec, diffeq).



