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We will deal with solutions of linear difference equations with

polynomial coefficients:
aq(2)y(z +d) +--- +a1(2)y(z + 1) + ao(2)y(z) =0, (1)

ai1(z),a2(2),...,aq-1(2) € Clz], ag(z),aq(z) € C[z]\ {0},
ged(ag(2),...,aq(2)) = 1.

We can associate with equation (1) the linear difference operator

L=ag(2)E*+ - 4 a1(2)E + ao(2), (2)
where F is the shift operator: F(y(z)) = y(z +1). Equation (1) can
be rewritten in the form L(y) = 0.

For short, we will say about solutions of L instead of solutions of

the equation L(y) = 0.
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It is known that any operator of the form (2) has a fundamental
system of entire solutions (Praagman, 1986). We strengthen this

result:

Theorem 1 The C-linear space of sequences which are restrictions
to 7. of entire solutions of operator (2) has dimension d. A basis

for this space can be found algorithmically.
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/Example 1 The I'-function I'(z) is a meromorphic solution of \
L =FE —z. This function has finite values when z =1,2,..., and
simple poles when z =0,—1,—2,...

Set

sin 27z
2
If we multiply T'(z) by o(z), then we get an entire solution of L

o(z) =

(since 0(z) = o(z+1)). The sequence

0, if n >0,
Cn — (_1)_n+1 . (3)
Sy if n <O0.

is the restriction of this solution to Z. Notice that if n < 0 then

cn = Res,—,I'(2) since

o(z—n)=z—-n+o(z—n), z—n, nec .
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This example demonstrates a simple trick which can help to

construct the solutions we need.

We add the following. Let ¢(z) be a meromorphic solution of an
operator L of the form (2) and u € C. Then the orders of all poles
of ¢ that belong to u + Z are bounded. If N is the maximum of
such orders, then we can consider the solution (o(z — u))™ o(2).
This solution has no pole in the set u + Z and its restriction to

w + Z. is a non-zero sequence.
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Let’s go back to entire solutions. The following statement can be

proven quite easy

Let p1(2),02(2),-..,par1(2) be entire solutions of an operator L of

order d, then the sequences

(1(n)), (p2(n)), ... (pa(n)), (a+1(n)), neZ,

are C-linearly dependent.

The question is: How to prove that there exist the entire solutions

©1(2),p2(2),...,pq4(z) such that the sequences
(p1(n)), (p2(n)), ... ,(pa(n)), n €L,

are C-linearly independent?
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The following theorem helps very much.

has meromorphic solutions ¥1(z),2(2),...,Yq(z) such that for
some integer [

(CI,) wz(l—i_]) — 57Z,j7 Za] — 1727°°°7d7.

(b) ¥i(z) has no poles in the half-plane Rez > 1, 1 =1,2,...,d.

-

Theorem 2 (Ramis-Barkatou) An operator L € Clz, E] of order d
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Notice that all possible poles of ¥1(z),12(2),...,194(z) belongs to a

set of the form
k
U(uj—N), Uy, Uz, ..., up € C, (4)
j=1

since the coefficients of L are polynomials and due to (b).

At the first glance we can prove easy what we need using the
statement of this theorem together with the simple trick that was

demonstrated in Example 1. But this is not correct.
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/Example 2 For any d > 1 we can construct L € Clz, E], \
ord L = d, having rational solutions

1 1 1
;7 ;7 o o o ’ g. (5)
Set again
sin 27z

o(2) = 2T

If we multiply solutions (5) by, resp., o(2), (0(2))?,...,(c(2))?,
then the restriction to Z. of any product will be equal to the
sequence (0n.0). The first impression is such that the restriction to
2, of any meromorphic solution of L that has no poles in 7 is a
sequence of the form

u, if n =20,

0, if n#0,

\ieZueC. //
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But we can see that L has besides (5), e.g., the entire solution

1 1
;o

whose restriction to Z. is the sequence h:

0, ifn=0,

hy, =
%, if n # 0,

n € /.
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It is easy to show that L has d meromorphic (even entire) solutions

whose restrictions to Z, are C-linearly independent sequences

AN A ACF

) _ 0, iftn=0,
" %, if n #£ 0,
]:1727° 7d_17
Bd) _ 1, it n=0,
" 0, if n#0.
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KAS for the general case, we can prove the following proposition. \

Proposition 1 Let ¥1(z),%2(2),...,%q4(z) be as in Theorem 2.
Then the set

Clo(2),(0(2) ] (2) +---+ Clo(2), (0(2)) ] Yal2)  (6)
contains x1(z), x2(2),...,xqa(z) such that
o the poles of x1(2),x2(2),-..,xa(z) belong to a set of the form

Jw; +2), (7

where the complex numbers w;, 3 =1,2,...,m, are not integer;

e the sequences

(x1(n), (x2(n), ... (xa(n)), neZ,

K are C-linearly independent. /
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(Of course, any function from the set (6) is a meromorphic solution

of the original L.)

This proposition gives an opportunity to prove that L of the form
(2) has the entire solutions ¢1(z), w2(z),...,vq4(z) such that the
sequences (¢1(n)), (¢2(n)), ... ,(pq(n)) are C-linearly
independent.

o /
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Consider the mentioned above meromorphic solutions
X1(2),x2(2),...,xqa(z) of L. Let N be the maximal value of the
orders of the poles of x1(2), x2(2),...,xq(z). Let

Az) = H sin® 7(z — w;)

(see formula (7)). The entire functions

2

are solutions of L since sin® mu = sin? 7(u + 1) for any u € C.

-

p1(2) = A2)x1(2), wa(z) = AM2)xa(2), .. palz) = A2)xa(z)

/
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The restrictions of these entire solutions to Z are C-linearly

independent, since up to the non-zero factor

m

H sin?™V TW;

j=1
they are equal to the restrictions of the functions

x1(2), x2(2),...,x4(z) to Z.

-
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Example 3 The meromorphic (rational) function

1
B 222 +1)(3z+ 1)

()

18 a solution of the operator
L=(z+1)(224+3)32+4)E —2(22+1)(3z+1).

The multiplication of ¥(z) by
e (s+)
o(z)sin“7 | z + 3

gives an entire solution p(z) of L which vanishes at
(=3 +Z)U (=% +Z) and (p(n)) = (dn,0) (notice that the factor
o(z) eliminates the poles 0 and —3 of ¢(z)).

-
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e restrictions to Z of a meromorphic solution of L which has no

('

poles in Z: will be called a submeromorphic (sequential) solution of

L. The C-linear space of submeromorphic solutions of L will be
denoted by Vim(L).

A subanalytic solution of L is a restriction to Z of a single-valued
analytic solution ¢(z) such that Z C dom(p). The C-linear space
of subanalytic solutions of L will be denoted by Vi, (L).

Finally, let us denote the C-linear space of restrictions to Z of
entire solutions of L by Ve (L).

The following theorem can be proven:

Theorem 3 The equalities

‘/;e(L) — Vvsa(L) — ‘/;m(L)

@)ld. /
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We will also consider the space Vi (L) of so-called subformal
sequential solutions. This will help us to prove that a basis for the

space V(L) can be found algorithmically.
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As usual, we denote by C[[¢]] the ring of formal Taylor power series
in ¢ and by C((¢)) the field of formal Laurent series, i.e. the
quotient field of the ring C|[¢]] (here ¢ is a new variable, rather
than a “small number”). Any sequence F : Z — C((¢)) will be

called a formal sequence.

If a(z) is a polynomial or a rational function then we set
a(z) = a(z + €), here ¢ is a variable. We associate with L the

operator

A

L=ag(2)E*+ -+ a1E(2) +a0(2) = ag(z+e)E¥+ -+ ap(z +¢)

which acts on formal sequences.

The operator L is called the deformation of L (M. van Hoeij).

o /
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We will call a formal sequential solution of L a solutions of the
form F : Z — K((¢g)).

Let ¢ : C — C be a meromorphic function. For each n € Z
expand

w(z) — Cnapn ('Z o n)pn —|_ Cn,pn_|_1(Z o n)pn+1 —|_ st
with p, € Z and ¢, , # 0. Define the formal sequence
Y Z—Ce), $= %),

setting

A

_ +1
wn T C’)’L,pn gpn + Cn7pn+1€pn _|_ AR/

n € /.

-
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/It is possible to prove that \

L() =0 = L($) = 0. (8)

A formal solution F : Z — C[[¢]] of L will be called a Taylor
formal solution. A sequential solution f will be called subformal
(sequential) solution of L if L has a formal Taylor solution F, such
that f,, is the constant term of the series F},, n € Z. The set

Vi (L) of subformal solutions of L is evidently a C-linear space.

The following theorem can be proven.

Theorem 4 dim Vi (L) = ord L.

Theorems 3, 4 and (8) imply that
Vst (L) = Vse(L) = Via(L) = Vem(L).

Therefore it is sufficient to construct a basis of Vi (L) to get a

Kbasis of, e.g., Vee(L). /
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A segment of integer numbers
I={kk+1,...,1}, kilekZ, k<I,
is an essential segment of (2) if
e the polynomial ag4(z — d) has no integer roots > [,
e the polynomial ag(z) has no integer roots < k,
o #(1)>d

If I is an essential segment of operator (2) then any sequential
solution c is uniquely determined by the values ¢,,, n € I. Therefore
if we want to describe Vg (L), then it is sufficient to find a basis of
the restriction of Vi (L) to 1.

o /
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The algorithm is based on the algorithm by Abramov&van Hoei]
(2003) for finding values of subformal solutions, the idea of that

algorithm is as follows.

Let ¢ € Z and
anFq—|—17°'°7Fq—|—d—l

be given elements of K|[¢||, then, theoretically speaking, by using
the operator IAJ, we can compute any element F, of the sequential
solution F = (F,) of the equation L(y) = 0.

It may be that F, € K((¢)) \ K|[e]] for a given integer
p¢{q,q+1,...,g+d—1}. Starting with ¢, p we can write down
in advance a finite set C, , of linear equations for a finite number of

coefficients of power series Fy, Fy11,..., Fq+q—1 which guarantee
that F, € K|[¢]].

o /
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Indeed, set
Fq — uq,O —|_ ’U,q’1€ —|— fu,q,2€2 —|— JEIRI
2
FQ-H — uq—|—1,0 + Uq_|_1’1€ -+ uq_|_1,25 + ... :
= 2
Fotda—1 = Ug4d—10 + Ugrd—1,1€ + Ugrg—128° + ~---,

(9)
where series on the right are generic. When we compute F, we get
a series, and each of its coefficients is a linear form in a finite set of
u; ;. The series F), may contain negative exponents of . We can
find desired conditions on the coefficients u; ; in (9) after equating

the corresponding coeflicients to zero.

o /
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If ¢ € Z is fixed then the systems C, , for any integer p > ¢+ d — 1
can be found algorithmically using truncated series (taking into
account the terms of power series (9) till €™ where m is the sum of
multiplicities of all integer roots of the polynomial a4(z — d)). It is
also possible to find the linear form [, , which represents the
coefficient of € of the series F,.

o /

25




4 N

Now we are able to describe how to construct a basis of the
restrictions to I of all subformal solutions of L.

Let I ={k,k+1,...,l} be an essential segment of L. If

| =k +d—1 then we can take any d C-linearly independent
elements of C” and this will be a basis of the restriction of Vi (L)
to I. Suppose that [ > k +d — 1. Take ¢ = k£ and construct C, ;,
lgp forp=Fk+d,k+d+1,...,I. Add to linear equations from all

constructed C, , the equations
Upo =lgp, P=k+dk+d+1,...,1L

Denote by A the obtained system of linear algebraic equations.

o /

26




4 N

Let us construct a basis of the solution space of A and then
construct the projection of each vector of this basis into the space
of vectors (uk 0, Uk+1,0,---,U,0). Taking any basis of the C-linear
space generated by such projections we get a basis of the

restrictions to I of all subformal solutions of the operator L.

o /
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Example 4 Let
L=2E*+(142°)E -z

and F be a formal solution of L. The segment I = {0,1,2} is an
essential segment of L.
Wrrite

FO = U0,0 + Uup,1€ + U0,2€2 + 0(53),

F; = U1,0 + UL1E T U1,2€2 -+ 0(83).

We calculate using L:

U0 . —U1,1 1T U0
Fy=——-+ —u1,0 —u1,2 + up1 + O(e).
€ €
We ﬁnd 00’2 = {—ul,o = 0, U0,0 — u1,1 = 0} and
lo2 = —u1,0— u1,2 +Uo,1-

-

28
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We get the system A:

—U1,0

U1,0

_|_’U/270

—Uo,1

—U1.1

—|‘U1’2

29
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A basis of the space of its solutions
(UO,Oa u1,0, U2,0, 0,1, U1,1, U1,2)
18
(0,0,1,1,0,0), (0,0,—1,0,1,0), (1,0,0,0,0,1).

The projections of these vectors into the space of vectors

(w00, u1.0,u2,0) are
(0,0,1), (0,0,-1), (1,0,0),
and a basis of the space generated by these three vectors is
(0,0,1), (1,0,0). (10)

It follows that the vectors (10) give a basis of subformal solutions

restricted to 1.

o /
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Subanalytic solutions have applications in computer algebra. It can
be shown that some implementations of certain well-known
summation algorithms (Gosper, Zeilberger, Accurate Summation)
in existing computer algebra systems work correctly when the input
sequence is a subanalytic solution of an equation or a system, but

can give incorrect results for some sequential solutions.

o /
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Example 5 Let

L=20z+1)(z—2)F— (22— 1)(z - 1). (11)

32
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There are two sequential solutions

['(2n — 2)
1 _ 7
‘T Tt DC(n—2)an " ©

(the limait
['(2z — 2
lim (22 —2)

Z—20 F(Z + ]_)F(Z — 2)4Z

exists and is finite even when I'(2z — 2) has a pole at zp), and

2n—3
cl?) = <4"’—n>, n € 2.

The sequences ¢V and ¢® coincide when n > 1 orn < 0, but in

combinatorics (2nn_3) 18 usually defined to be —1 whenn =1 and 1

when n = 0, while F(nrju(?;lr_(i)_z) 18 equal to —% when n =1, and 1s

equal to % when n = 0.
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/Gospefr’s algorithm succeeds on L producing
- 2z(z+1)
 z2=2
At first glance this tmplies that the DNLF

R(z)

w—1

Z cn = R(w)cy, — R(0)c

n=0
18 correct for any sequential solution ¢ of L.

But this formula is not in general correct when, e.g., ¢ = ().

Formula (12) would give

L) 2w(w + 1) (wa_?’)
Z gn (w — 2)4w

n=0

Kwhat 18 true only if w = 1.

(12)
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The fact is that we are not able to define the element by of the

sequence b, = R(n)cg) in such a way that b,4+1 — by, = o\ for all

n € /.

This gives rise to defects in many implementations of summation

algorithms.

-
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At the same time formula (12) is correct for any w > 1 when

C — C(l) N

N ['(2n—2)  2w(w+ 102w — 2)
2 T(n+ )I(n—2)4"  (w—2)[(w+ 1)T'(w — 2)4’

n—

and this is due to the solution ¢V is a subanalytic solution of L

(and even more: ¢V is the restriction of an entire solution of L to

7).

o /
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Subanalytic solutions of L are safe for applying summation
algorithms (this can be proven), but the condition of the
subanalyticy is not a necessary condition for correct applicability of
the summing algorithms: there exist examples where the dimension

of the space of “nice” sequential solutions is > d.

Example 6 If L = zE — (z + 1), then Gosper’s algorithm produces
the one parametric family of summing operators (rational

functions)

—1
© +g, ac C.
2 z

If we take oo = 0 we get R = "";1. Then any sequential solution of

L can be multiplied by R.

o /
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The dimension of the space of all sequential solutions of L is 2, a
basis 1S
W =n, ¢ =1n|, neZ

The sequential solution ¢V is subanalytic since L has the analytic
solution y(z) = z. But sequential solution c?) is not subanalytic

since the dimension of the space of subanalytic solutions of a first

order operator is 1.

o /
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The results presented in this talk were obtained by the author
jointly with M. Barkatou, M. van Hoeij, M. Petkovsek.
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