Deformation techniques
for triangular arithmetic

A. Bostan, M. Chowdhury, J. van der Hoeven, É. Schost
Triangular sets

Def.

- A **triangular set** is a family of polynomial $\mathbf{T} = (T_1, T_2, \ldots, T_n)$ in $R[x_1, \ldots, x_n]$, where
 - R a ring;
 - T_i is in $R[x_1, \ldots, x_i]$;
 - T_i is monic in X_i;
 - T_i is reduced modulo T_1, \ldots, T_{i-1}.

Example

\[
T_1(x_1) = x_1^2 + 3x_1
\]
\[
T_2(x_1, x_2) = x_2^2 + x_2x_1
\]
Why?

All-purpose polynomial system solving

• **1980’s, 1990’s**: Wu, Kalkbrenner, Lazard, Wang, Aubry, Moreno Maza
• still a lot of hard questions, especially in positive dimension.

The appropriate data-structure for a lot of more specialized questions

• often situations involving some form of symmetry;
• Galois theory, crypto, factoring in algebraic extensions, . . .
• often in dimension zero.
Goal of this work

Our question.

• Given T and A and B both reduced modulo $\langle T \rangle$, how much does it cost to compute $C = AB \mod \langle T \rangle$?

Example (continued)

\[
A = x_1x_2 + x_2 + x_1 + 1
\]
\[
B = x_1x_2 + x_2 + x_1 + 1
\]
\[
AB = x_1^2x_2^2 + 2x_2^2x_1 + 2x_2x_1^2 + 4x_1x_2 + x_2^2 + 2x_2 + x_1^2 + 2x_1 + 1
\]
\[
C = -6x_2x_1 + 2x_2 - x_1 + 1
\]
Why?

1. General philosophy: as with univariate polynomials, multiplication controls all other operations (especially when no splitting happens).

 • inversion;

 • resultant;

 • Hensel lifting;

 • change of order;

 • …

2. Some concrete examples:

 • see later.
Previous work

The complexity measure is

\[\delta = d_1 \cdots d_n, \quad \text{with} \quad d_i = \deg(T_i, x_i) \]

(this is essentially the input and output size).

Theo. [Li, Moreno Maza, Schost]

- The product \(AB \mod \langle \mathbf{T} \rangle \) can be computed in time \(O^\sim(4^n \delta) \).

The notation \(O^\sim \) hides logarithmic factors.

Theo. [Li, Moreno Maza, Schost]

- Let \(r = \max d_i \).
- Suppose that for all \(i, T_i \) is in \(R[x_i] \), and that \(R \) has \(r \) interpolation points. Then the product \(AB \mod \langle \mathbf{T} \rangle \) can be computed in time \(O^\sim(\delta r) \).
The problem with multivariate polynomials

In n variables,

- **polynomial** multiplication induces a 2^n overhead;
- so **triangular** multiplication should avoid expansion.
- **Evaluation / interpolation** is the key.
This work

We extend the second approach of Li et al. to a few more general situations.

- The support of the polynomials determines the complexity;
- for nice cases, we get results of the same form

\[O^\sim(\delta r) \quad \text{with} \quad r = \sum d_i. \]

Remark

- For \(d_i = 2 \) and \(\delta = 2^n \), taking the best of both approaches (general/specialized) gives

\[\delta \left(e^{\sqrt{\log \delta}} \right)^{O(1)}. \]
Examples
Power series

The monomial ideal

\[
\begin{bmatrix}
 x_n^{d_n} \\
 \vdots \\
 x_2^{d_2} \\
 x_1^{d_1}
\end{bmatrix}
\]

is triangular.

No quasi-linear algorithm was known until Schost, 2005.
Polynomial multiplication

Reductions:

- to multiply polynomials of degree d, enough to multiply series mod x^d;
- we can take $d = 2^k$.

From uni- to multivariate (with $d = 8 = 2^3$)

- write $x = x_0$, and introduce x_1, x_2;
- use the equality between ideals

\[
\begin{vmatrix}
 x_2 - x_0^4 \\
 x_1 - x_0^2 \\
 x_0^8
\end{vmatrix}
=
\begin{vmatrix}
 x_0^2 - x_1 \\
 x_1^2 - x_2 \\
 x_2^2
\end{vmatrix}
\]

- change of basis is free via base-2 decomposition of indices.
Exponential generating series multiplication

Let \((a_i)_{i \leq d}\), \((b_i)_{i \leq d}\) and \((c_i)_{i \leq d}\) be sequences that satisfy

\[c_i = \sum_j \binom{i}{j} a_j b_{i-j} \quad i \leq d. \]

If we were over \(\mathbb{Q}\), this would mean

\[\sum_{i \leq d} \frac{c_i}{i!} x^i = \sum_{i \leq d} \frac{a_i}{i!} x^i \sum_{i \leq d} \frac{b_i}{i!} x^i \mod x^d. \]

Here, we suppose that

- all odd integers can be inverted in the base ring;

 examples: \(\mathbb{Q}\), any GF\((2^m)\), any \(\mathbb{Z}/2^\ell\mathbb{Z}\)

- and also that \(d = 2^k\).
Reduction to multivariate multiplication

For $i \geq 0$, let

$$i_\star = \frac{i!}{\text{largest power of 2 that divides } i!}$$

Prop.

- The c_i are given by

$$\sum_i \frac{c_i}{i_\star} x_0^{i_0} \cdots x_{k-1}^{i_{k-1}} = \sum_i \frac{a_i}{i_\star} x_0^{i_0} \cdots x_{k-1}^{i_{k-1}} \sum_i \frac{b_i}{i_\star} x_0^{i_0} \cdots x_{k-1}^{i_{k-1}} \mod \langle T \rangle,$$

with

$$T = \begin{vmatrix}
 x_0^2 - 2x_1 \\
 \vdots \\
 x_{k-2}^2 - 2x_{k-1} \\
 x_{k-1}^2
\end{vmatrix}$$

and $i = i_0 + 2i_1 + \cdots + 2^{k-1}i_{k-1}$
The canonical example

Addition of algebraic numbers:

\[f = \prod_{i} (x - f_i), \quad g = \prod_{j} (x - g_j), \quad h = \prod_{i,j} (x - (f_i + g_j)). \]

To compute \(h \):

- compute the Newton sums of \(f \) and \(g \);
- deduce those of \(h \) by exponential generating series product;
- get \(h \) by exponentiation.

In small characteristic, say over \(\mathbb{F}_2 \):

- we compute the Newton sums modulo a higher power of 2;
- the exponential series product is done multivariate-ly.
Artin-Schreier

To handle degree-p extensions

- of the form $\mathbb{F}[x]/\langle x^p - x - \alpha \rangle$,
- where $\text{char}(\mathbb{F}) = p$.

Algorithms such as Couveignes’ generate towers

\[
T = \begin{vmatrix}
 x_n^p - x_n - \alpha_n(x_1, \ldots, x_{n-1}) \\
 \vdots \\
 x_2^p - x_2 - \alpha_2(x_1) \\
 x_1^p - x_1 - \alpha_1
\end{vmatrix}
\]

and we have to compute modulo such T’s.
Summary

Multivariate power series

• $T_i = x_i^{d_i}$

Polynomial multiplication

• $T_i = x_i^2 - x_{i-1}$

Exponential generating series

• $T_i = x_i^2 - 2x_{i-1}$

Artin-Schreier (over \mathbb{F}_2)

• $T_i = x_i^2 + x_i + \alpha_i(x_1, \ldots, x_{i-1})$
The split case
The nice case

When all polynomials \textit{split into linear factors}, fast algorithms are available. Precisely, suppose that there exists:

- a_1, \ldots, a_{d_1} such that
 \[T_1 = (x_1 - a_1) \cdots (x_1 - a_{d_1}) \]

- for all $i \leq d_1$, $a_{i,1}, \ldots, a_{i,d_2}$ such that
 \[T_2(a_i, x_2) = (x_2 - a_{i,1}) \cdots (x_2 - a_{i,d_2}) \]

- for all $i \leq d_1, j \leq d_2$, $a_{i,j,1}, \ldots, a_{i,j,d_3}$ such that
 \[T_3(a_i, a_j, x_3) = (x_3 - a_{i,j,1}) \cdots (x_2 - a_{i,j,d_3}) \]

- \ldots up to n.
What this means

The points \(P_{i,j,k,…} = (a_i, a_{i,j}, a_{i,j,k}, …) \) are the coordinates of the points

\[V = V(T_1, \ldots, T_n). \]
Modular multiplication

Remember that in one variable,

\[
\text{FFT multiplication} = \text{multiplication mod } x^d - 1
\]

Hence, to multiply \(A, B\) modulo \(\langle T \rangle\):

- evaluate \(A, B\) at \(V\);
- multiply the values;
- interpolate the result.

Extra condition

- the differences \(a_i - a_{i'}, \ldots\) should all be units.
Evaluation and interpolation

Similar to multidimensional FFT:

- Evaluate A at $x_1 = a_1, \ldots, a_{d_1}$. We get A_1, \ldots, A_{d_1}.
 Cost: $M(d_1) \log(d_1) \times (d_2 \cdots d_n) = \delta \frac{M(d_1) \log(d_1)}{d_1}$.

- For $i \leq d_1$, evaluate A_i at $a_{i,1}, \ldots, a_{i,d_2}$. We get $A_{i,1}, \ldots, A_{i,d_2}$.
 Cost: $d_1 M(d_2) \log(d_2) \times (d_3 \cdots d_n) = \delta \frac{M(d_2) \log(d_2)}{d_2}$.

- ...up to n.

Total cost: $\delta \sum_i \frac{M(d_i) \log(d_i)}{d_i} \leq \delta \log^2(\delta) \log \log(\delta)$.
The general case
Deformation

Given $\mathbf{T} = (T_1, \ldots, T_n)$ in $R[x_1, \ldots, x_n]$.

- Build $\mathbf{U} = (U_1, \ldots, U_n)$, which completely splits, with pairwise distinct roots.
 - constraint: $\deg(U_i, X_i) = \deg(T_i, X_i) = d_i$;
 - other than that, we are free to pick \mathbf{U} as we wish;
 - this requires that the base field has enough elements.

- Build $\mathbf{V} = (V_1, \ldots, V_n)$, with
 $$V_i = \eta T_i + (1 - \eta) U_i.$$

Algorithm

- compute the product modulo $\langle \mathbf{V} \rangle$;
 by evaluation / interpolation
- let $\eta = 1$ in the result.
The roots of V

Hensel’s lemma

- Because $\text{subs}(\eta = 0, V) = U$, and because the roots of U are simple in R^n, V admits pairwise distincts roots in $R[[\eta]]^n$.

Cost to reach some precision r.

- Lift the x_1-coordinates
 $M(d_1) \log(d_1) M(r)$
- Substitute them in V_2, \ldots, V_n
 $M(d_1) \log(d_1) (d_2 + d_2d_3 + \cdots + d_2 \cdots d_n) M(r)$
- Lift the x_2-coordinates
 $d_1 M(d_2) \log(d_2) M(r)$
- Substitute them in V_3, \ldots, V_n
 $d_1 M(d_2) \log(d_2) (d_2d_3 + \cdots + d_2 \cdots d_n) M(r)$
- \ldots

\[M(r) \delta \log^2(\delta) \log \log(\delta). \]
Overall complexity

Precision

- Let $r = \deg(AB \mod \langle V \rangle, \eta)$.
- All computations done mod η^{r+1}.

 No loss of precision in the algorithm

Total cost

- Given T and the roots of U,

 $$M(r) \delta \sum_i \frac{M(d_i) \log(d_i)}{d_i}$$

 i.e. $$M(r) \delta \log^2(\delta) \log \log(\delta)$$

 (constructing U is negligible)
Bounding the precision
Basic remarks

Remarks.

• The needed precision \(r \) is

\[
\deg(x_1^{2d_1-2} \cdots x_n^{2d_n-2} \mod \langle V \rangle, \eta).
\]

• In general, \(r = \delta \), so this approach is useless.

• \(r \) should be smaller for cases with structure.

Example

• Suppose the \(T_i \) and \(U_i \) are univariate.

• Then \(V_i = x_i^{d_i} + v_{i,d_i-1}x_i^{d_i-1} + \cdots + v_{i,0} \), linear in \(\eta \).

• Each reduction decreases one partial degree and increments the degree in \(\eta \).

• So \(r = \sum_i (d_i - 1) \).
Recurrence relations

Let \(e = (e_1, \ldots, e_n) \) and

\[
W(e) = \deg(x_1^{e_1} \cdots x_n^{e_n} \mod \langle V \rangle, \eta).
\]

The support of \(V \) determines recurrence relations on \(W \). Write

\[
V_n = x_n^{d_n} + \sum_{i \leq S} v_{\alpha_i} x^{\alpha_i},
\]

for some exponents \(\alpha_i \) in \(\mathbb{N}^n \) and coefficients \(v_{\alpha_i} \) linear in \(\eta \).

Then,

- \(W(e) = W(e_1, \ldots, e_{n-1}) \) for \(e_n < d_n \);
- else,

\[
W(e) = 1 + \max_i W(e + \beta_i), \quad \beta_i = \alpha_i - (0, \ldots, 0, d_n).
\]
Simplest case

With $T_i = x_i^2 + x_{i-1}$, we take in characteristic $\neq 2$

\[
U_i = x_i^2 - 1 \implies V_i = x_i^2 + \eta x_{i-1} - (1 - \eta).
\]

Initial conditions

- $W(e_1) = \lfloor e_1/2 \rfloor \leq e_1/2$

Recurrence

- for $e_n = 0, 1$

\[
W(e_1, \ldots, e_n) = W(e_1, \ldots, e_{n-1}).
\]

- for $e_n \geq 2$

\[
W(e_1, \ldots, e_n) \leq 1 + \max W(e_1, \ldots, e_n - 2), W(e_1, \ldots, e_{n-1} + 1, e_n - 2)
\]

or

\[
W(e_1, \ldots, e_n) \leq 1 + W(e_1, \ldots, e_{n-1} + 1, e_n - 2).
\]
Simplest case

Unrolling until $e_n = 0, 1$

- $W(e_1, \ldots, e_n) = \lfloor e_n/2 \rfloor + W(e_1, \ldots, e_{n-1} + \lfloor e_n/2 \rfloor)$

Ansatz: assume

$$W(e_1, \ldots, e_{n-1}) \leq w_1 e_1 + \cdots + w_{n-1} e_{n-1}, \quad w_i \geq 0.$$

Then

$$W(e_1, \ldots, e_n) \leq \frac{e_n}{2} + w_1 e_1 + \cdots + w_{n-1} e_{n-1} + w_{n-1} \frac{e_n}{2}$$

so we also have sub-linearity in n variables with $w_n = (w_{n-1} + 1)/2$.

Finally,

$$r \leq \sum_{i \leq n} 2w_i \quad \text{with} \quad w_1 = \frac{1}{2}, \quad w_i = \frac{w_{i-1} + 1}{2},$$

so $r \in O(n)$.
Simple case

With $T_i = x_i^2 + x_{i-1}$, we take in characteristic 2

$$U_i = x_i^2 - x_i \implies V_i = x_i^2 + \eta x_{i-1} - (1 - \eta)x_i.$$

Initial conditions

- $W(e_1) = e_1 - 1 \leq e_1$.

Recurrence

- for $e_n = 0, 1$

 $$W(e_1, \ldots, e_n) = W(e_1, \ldots, e_{n-1}).$$

- for $e_n \geq 2$

 $$W(e_1, \ldots, e_n) \leq 1 + \max W(e_1, \ldots, e_{n-1}), W(e_1, \ldots, e_{n-1} + 1, e_n - 2)$$
Simple case

Unrolling until $e_n = 0, 1$

- We can follow the directions
 $$\beta_1 = (0, \ldots, 0, -1), \quad \beta_2 = (0, \ldots, 1, -2)$$

- We do a_1 steps in the first direction, a_2 steps in the second one.

When we stop, the n-coordinate is either 0 or 1:

$$e_n - a_1 - 2a_2 \in \{0, 1\}$$

So,

$$W(e) \leq \max_{a_1, a_2 \in \mathbb{N}} a_1 + a_2 + W(e + a_1\beta_1 + a_2\beta_2)$$

with

$$e_n - a_1 - 2a_2 \in \{0, 1\}$$
Simple case

Induction: assume

\[W(e_1, \ldots, e_{n-1}) \leq w_1 e_1 + \cdots + w_{n-1} e_{n-1}, \quad w_i \geq 0 \]

Then,

\[
W(e) = \max_{a_1, a_2 \in \mathbb{N}} a_1 + a_2 + w_1 e_1 + \cdots + w_{n-1} e_{n-1} + w_{n-1} a_2
\]

\[
\leq \max_{a_1, a_2 \in \mathbb{R}_{\geq 0}} a_1 + a_2 + w_1 e_1 + \cdots + w_{n-1} e_{n-1} + w_{n-1} a_2
\]

- The max is either at \((a_1 = 0, a_2 = e_n/2)\) or \((a_1 = e_n, a_2 = 0)\).
- \(w_n = \max 1, (w_{n-1} + 1)/2\)
- as before, \(r = O(n)\).
In general

The \(w_i \)'s satisfy the recurrence

\[
 w_n = \max_i \frac{w_1 \beta_{i,1} + \cdots + w_{n-1} \beta_{i,n-1} + 1}{-\beta_{i,n}}
\]

Artin-Schreier, with \(p = 2 \)

\[
 V_n = x_n^2 + x_n + \eta x_1 \cdots x_{n-1} + \cdots
\]

- \(w_1 = 1 \)
- \(w_n = (w_1 + \cdots + w_{n-1} + 1)/2 \)
- \(r = O\left(\frac{3^n}{2}\right) \).