Common Multiples of Linear Differential and Difference Operators

Frédéric Chyzak
(joint work in progress with A. Bostan, Z. Li & B. Salvy)

Project-Team Algorithms, INRIA

March 17, 2008
Arithmetic Complexity of Polynomial Multiplication

For polynomial of degrees \(\leq n \):

- naive algorithm in \(O(n^2) \);
- Karatsuba in \(O(n^{\log_2 3}) \) by evaluation-interpolation at 0, 1, \(\infty \);
- Toom–Cook (lower exponents by more evaluation points);
- FFT in \(O(n \log n \log \log n) \) by eval.-interp. at \(n \)th roots of 1;
- F"urer’s 2007 algorithm in \(O(n \log n 2^{O(\log^* n)}) \).

Using FFT is quasi-optimal in the output size: \(\tilde{O}(n) \).

Throughout:

- only arithmetic complexity is considered;
- \(M(n) \) denotes complexity of polynomial multiplication.
Polynomial multiplication permits $O(M(n))$ for:

- Euclidean division, divisions of series, exp. and log. of series, series solutions of linear ODEs via Newton iteration;
- evaluation-interpolation at points in geometric progression.

Polynomial multiplication permits $O(M(n) \log n)$ for:

- GCD, LCM, Bézout relations, Padé approx., resultants via “half GCD”;
- evaluation-interpolation at general points, shifts of the indeterminate by divide-and-conquer approach;
- special changes of polynomial bases.

However, not: series composition, general changes of polynomial bases, factorisation.
Bivariate Polynomials from $K[x, y]$

For polynomials of degree $\leq n$ in x and $\leq r$ in y.

Multiplication in $O(M(nr))$ by $f(x, y) \leftrightarrow f(x, x^{2n+1})$.

LCM of elements viewed in $K(x)[y]$ in $O(M(nr) \log r)$.

Using FFT is quasi-optimal in the output size: $\tilde{O}(nr)$.
Matrix Multiplication as a Non-Commutative Yardstick?

Two skew-polynomial settings for differential operators:

- $\partial = d/dx$: $\mathcal{W} = K\langle x, \partial \rangle$, where $\partial x = x\partial + 1$.
- $\theta = x d/dx$: $\mathcal{E} = K\langle x, \theta \rangle$, where $\theta x = x(\theta + 1)$.

- van der Hoeven (2002): skew-polynomial multiplication in bidegree (n, n) in either algebra reduces to matrix multiplication.
- Bostan, C., Le Roux (submitted):
 - $\text{SkewM}(n, n) \leq 8 \text{MM}(n)$ in both algebras.
 - Computational equivalence: $O(\text{MM}(n)) = O(\text{SkewM}(n, n))$.

Natural question: What about other operations in \mathcal{W} and \mathcal{E}?
Sketch and Improvement of van der Hoeven’s Algorithm

\[A \text{ and } B \text{ of bidegree } (n, n) \rightarrow C = BA = \sum_{i=0}^{2n} x^i C_i(\theta), \ \deg C_i \leq 2n. \]

\[\theta^i(x^k) = k^i x^k \rightarrow C(x^k) = \sum_{i=0}^{2n} C_i(k) x^{i+k}. \]

By Lagrange interpolation: \((C_i(k))_{0 \leq i, k \leq 2n} \rightarrow (C_i(\theta))_{0 \leq i \leq 2n} \).

\[K[x]_{\leq 2n} \xrightarrow{A} K[x]_{\leq 3n} \xrightarrow{B} K[x]_{\leq 4n}. \]

Complexity \(\in O(\text{MM}(n)) + O(n \text{ M}(n) \log n) \subset O(\text{MM}(n)). \)

Fast evaluation-interpolation was not available in van der Hoeven’s youth: \(48 \text{ MM}(n) > 24 \text{ MM}(n) > 8 \text{ MM}(n). \)
Least Common Left Multiples

\(A = \) algebra of skew polys. with polynomial coefficients (\(W, E, R\)).
\(A(x) = \) algebra of skew polys. with rational coefficients:

- \(W(x) = K(x)\langle \partial \rangle, \ \partial f = f\partial + f'\) \hspace{1cm} (differential operators),
- \(E(x) = K(x)\langle \theta \rangle, \ \theta f = f\theta + xf'\) \hspace{1cm} (Eulerian operators).
- \(R(x) = K(x)\langle \sigma \rangle, \ \sigma f = f(x + 1)\sigma\) \hspace{1cm} (shift operators).

LCLM:

- common left multiple with least order in \(A(x)\),
- normalized in \(A\) with no content,
- for given \(L_i \in A\), \(L = \text{LCLM}(L_1, \ldots, L_k) = C_iL_i\) with \(C_i \in A(x)\).

\[L (\text{Sol } L_1 + \cdots + \text{Sol } L_k) = 0.\]
Iterated LCLMs are bad!

Maple 11’s `DEtools[LCLM]` by van Hoeij ($-100 < \text{coeffs.} < 100$):

\[
\begin{align*}
L_1 & \rightarrow 1.2 \text{ s} \\
L_2 & \rightarrow 1.3 \text{ s} \\
L_3 & \rightarrow 24 \text{ s} \\
L_4 & \rightarrow 24 \text{ s}
\end{align*}
\]

\[
\begin{align*}
L_1 & \rightarrow 1.2 \text{ s} \\
L_2 & \rightarrow 1.2 \text{ s} \\
L_3 & \rightarrow 27 \text{ s} \\
L_4 & \rightarrow 27 \text{ s}
\end{align*}
\]

\[
\begin{align*}
L_1 & \rightarrow 408 \text{ s} \\
L_2 & \rightarrow 27 \text{ s} \\
L_3 & \rightarrow 291 \text{ s} \\
L_4 & \rightarrow 229 \text{ s}
\end{align*}
\]

\[
\begin{align*}
\deg_\partial L_i &= r_i, \quad \deg_x L_i = d_i \\
\deg_\partial L &\leq R, \quad \deg_x L \leq B
\end{align*}
\]

<table>
<thead>
<tr>
<th>k</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>189</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>360</td>
</tr>
</tbody>
</table>
Proving Gessel’s Conjecture...

Generating series of n-step walks from $(0, 0)$ to (i, j):

$$Q(t; x, y) := \sum_{n,i,j \leq 0} f(n, i, j) x^i y^j t^n.$$

Conjecture (Gessel, about excursions):
$Q(t; 0, 0)$ is D-finite.

Conjecture (Gessel?, Bostan–Kauers?):
$Q(t; x, y)$ is D-finite in t.

$$Q(t; x, y) = \frac{1 - \frac{t}{xy} (Q(t; x, 0) - Q(t; 0, 0)) - \frac{t}{x} \left(1 + \frac{1}{y}\right) Q(t; 0, y)}{1 - \left(x + \frac{1}{x} + xy + \frac{1}{xy}\right) t}.$$

B & K’s Idea: an annihilator of $Q(t; x, y)$ is an LCLM related to annihilators of $Q(t; x, 0)$ and $Q(t; 0, y)$.

A Matter of Time?

\[
L_1(x, t, \partial_t)(Q(t; x, 0)) = O(t^{997}) \quad \text{with} \quad \deg_{\partial_t} L_1 = 11 \quad \deg_t L_1 \leq 96 \quad \deg_x L_1 \leq 78
\]

\[
L_2(y, t, \partial_t)(Q(t; 0, y)) = O(t^{1001}) \quad \deg_t L_2 = 11 \quad \deg_t L_2 \leq 68 \quad \deg_y L_1 \leq 28
\]

LCLM \(L \) has

\[
\deg_{\partial_t} L \leq 22 \quad \deg_t L \leq 1968 \quad \deg_x L \leq 936 \quad \deg_y L \leq 336
\]

, thus \(14 \cdot 10^9 \) coeffs.!

Direct calculation too large \(\rightarrow \approx 3 \cdot 10^5 \) evaluations of \((x, y)\)

Each evaluated LCLM calculation takes 3 min over \(\text{GF}_{9001} \) in usual
Magma, 1 min with new algorithm, should not take more than 2s
over \(\mathbb{Q} \) to hope for \(L \) in less than a week!

Interpolation would then prove \(L(x, y, t, \partial_t)(Q(t; x, y)) = O(t^{\approx 1000}) \).

Another of Zeilberger’s techniques should conclude \(\cdots = O(t^\infty) \).
Related Works for LCLMs in Specific Classes

LCLMs of two operators by A subresultant theory for linear ordinary differential polynomials, Z. Li (1998).

LCLMs of the form $\text{LCLM}(\{L(\beta x, \beta^{-1}\partial); \beta^k = 1\})$ appear for the extraction of k-sections in multisummable D-finite series in Remarques algorithmiques liées au rang d’un opérateur différentiel linéaire, Barkatou, C., Loday-Richaud (2003).

LCLMs of telescopers are used for the summation of rational functions, after a partial fraction decomposition, in A direct algorithm to construct the minimal Z-pairs for rational functions, H. Q. Le (2003).
Contributions

- Analysis of worst-case arithmetic complexity of existing algorithms for computing LCLMs.
- A tight bound $B \approx k^2 rd$ on the degree of L in x.
- A first algorithm, better for large r.
- A bound $B' \approx 2kr$ on the total degree in (x, ∂) in which common left multiples exist.
- A faster algorithm which computes the LCLM as the GCRD of two common multiples of small size. (Heuristic.)

Inspired by former work on algebraic series
(ISSAC’07, B., C., Lecerf, S., Schost).
Poole’s Method ($k = 2$)

1. $R := r_1 + r_2$, $D := \max\{d_1, d_2\}$.
2. $M_{i,j,1} := x^i \partial^j L_1$ for $0 \leq i \leq (R + 2)D$, $0 \leq j \leq r_2$.
3. $M_{i,j,2} := x^i \partial^j L_2$ for $0 \leq i \leq (R + 2)D$, $0 \leq j \leq r_1$.
4. Find a K-linear dependency of the $M_{i,j,k}$.

- $\#\text{unkowns} = (R + 2)((R + 2)D + 1)$,
- $\#\text{equations} = (R + 1)((R + 3)D + 1)$,
- $\dim \ker \geq D + 1$.

Complexity at least $O(R^{2\omega}D^\omega)$ for $k = 2$.
Iterative LCLMs in $O(kR^{3\omega}D^\omega)$; by balancing inputs in $O(R^{3\omega}D^\omega)$.

Frédéric Chyzak
Common Multiples of Linear Operators
Ore’s Method: Extended GCRD Algorithm $(k = 2)$

1. \((R_0, U_0, V_0) := (L_1, 1, 0), (R_1, U_1, V_1) := (L_2, 0, 1)\).

2. For \(i = 1, 2, \ldots, \) until \(R_{i+1} = 0\):
 - Perform right Euclidean div. \(R_{i-1} = Q_i R_i + R_{i+1}\).
 - Maintain invariant \(R_i = U_i L_1 + V_i L_2\):
 \[U_{i+1} := Q_i U_i - U_{i-1}, \quad V_{i+1} := Q_i V_i - V_{i-1}. \]

3. For \(m\) such that \(\text{GCRD} = R_m \neq 0\) and \(R_{m+1} = 0\), output \(U_{m+1} L_1 = -V_{m+1} L_2\).

Generically: \(\deg_{\partial} Q_i = 1, \quad \deg_{x} Q_i = \deg_{x} R_i = (i + 1)D\).

Euclidean div. costs \(\tilde{O}((r - i)iD)\), if \(r = \max\{r_1, r_2\}\).

Total complexity is \(\tilde{O}(R^3D)\) for \(k = 2\).
Iterative LCLMs in \(\tilde{O}(kR^4D)\); by balancing inputs in \(\tilde{O}(R^4D)\).
Van Hoeij’s Method ($k \geq 2$): I. The Ideas

Generic solutions: $L_j(f_j) = 0$, $1 \leq j \leq k$. $c_j = \text{lcm}(L_j)$.

- If

$$
\begin{pmatrix}
 \ell_0 & \cdots & \ell_R \\
 f_1 & \cdots & f_k \\
 \partial(f_1) & \cdots & \partial(f_k) \\
 \vdots & \ddots & \vdots \\
 \partial^R(f_1) & \cdots & \partial^R(f_k)
\end{pmatrix} = 0,
$$

then $L = \ell_0 + \cdots + \ell_R \partial^R$ is a left common multiple of the L_j.

- For computations in $\mathcal{W}(x)^k$:

$$
\partial^i(f_j) = \frac{n_{i,j,0}}{c_j^i} f_j + \cdots + \frac{n_{i,j,r_{j}-1}}{c_j^i} \partial^{r_{j}-1}(f_j) = \frac{1}{c_j^i} n_{i,j}(f_j).
$$
Theorem (Storjohann and Villard, 2005): Let M be an $m \times n$ matrix of polynomials of degree d.

- The rank ρ of M can be computed together with $m - \rho$ linearly independent polynomial elements of the kernel in

$$\tilde{O} \left(\frac{mn}{\rho^2} MM(\rho) M(d) \right)$$

arithmetic operations

by a (certified) randomized Las Vegas algorithm.

- The sum of the degrees of the basis elements is bounded by

$$(m - 2r + r \lceil \log_2 r \rceil) d.$$

For $MM(s) = s^\omega$ and using FFT, this becomes $\tilde{O}(mn\rho^\omega d)$; if additionally $m = n$, this is $\tilde{O}(n^\omega d)$.

Van Hoeij’s Method ($k \geq 2$): II. Revisiting the Algorithm

1. For $0 \leq i \leq R = kr$, $1 \leq j \leq k$:
 \[c_j^{-i} n_{i,j} := \text{rem}(\partial v_{i-1,j}, L_j) = \text{rem}(\partial^i, L_j). \]

2. View each $n_{i,j}$ as a row in $K[x]^{r_j}$ and determine the rank ρ of $N = (n_{i,j})$ (Storjohann–Villard).

3. Randomly select ρ columns from the first $\rho + 1$ rows of N to get a matrix M of rank ρ.

4. Determine the polynomial kernel of M (Storjohann–Villard).

5. Modify the (single) basis element so as to take the denominators into account.

Complexity: $\tilde{O}(R^3D)$ for filling in V; $\tilde{O}(R^\omega+1D)$ for computing the rank and the kernel; $\tilde{O}(R^3D)$ for the last modification step.
Setting: $\partial a = \sigma(a) \partial + \delta(a)$ where σ and δ do not increase the degrees in x and can be computed in linearly-many operations.

$$S_N(P) = \begin{pmatrix} \partial^{N-\text{deg}_\partial} P & P \\ \vdots & \vdots \\ \partial P & \partial P \\ P & P \end{pmatrix}, \quad M_N = \begin{pmatrix} S_N(L_1) & & \\ & \ddots & \\ & & S_N(L_k) \\ -S_{N+1}(1) & \ldots & -S_{N+1}(1) \end{pmatrix}.$$

Left kernel of $M_N \leftrightarrow$ Common multiples and their cofactors.

Fast polynomial-kernel algorithm for solving (Storjohann–Villard).
Tight degree bound for the analysis (from Hadamard’s bound).
Degree Bound for Common Multiples of Minimal Order

$L_i \leftrightarrow (r_i, d_i), \quad R = r_1 + \cdots + r_k, \quad D = \max_{1 \leq i \leq k} d_i. \quad L = \text{LCLM}(L_1, \ldots, L_k) \rightarrow \text{order } \ell \leq R.$

Matrix M_N for $N \leq R$:

1. size $m_N \times n_N$ with $m_N = O(kR)$, $n_N = O(kR)$;
2. non-trivial left kernel for $N = R$: $m_R - n_R = 1$;
3. rank is $\rho_N = k(N + 1) - R + \ell$, because

$$\ker M_N = \text{span}\{L, \partial L, \ldots, \partial^{N-\ell} L\} = (A(x)L)_{\leq N};$$

4. coefficients have degree $\leq D$.

Hadamard’s bound on $\det M_N$ for $N = \ell = \rho_R + R - k(R + 1)$:

$$B = (k\ell + k - R)D = O(kRD).$$
Algorithm for Common Multiples of Minimal Order

1. Compute M_R and determine its rank ρ (Storjohann–Villard).
2. $\ell := \rho + R - k(R + 1)$.
3. Extract M_ℓ from M_R by suppressing rows and columns.
4. Compute the kernel of M_ℓ (Storjohann–Villard).
5. Return the (single) polynomial solution (C_1, \ldots, C_k, L) found.

Complexity:

$$\tilde{O}(k^2 R^2 \rho^{\omega-2} D) = \tilde{O}(k^\omega R^\omega D) = \tilde{O}(MM(\text{size}) M(\text{degree})).$$
Towards Common Multiples of Small Total Degree

In the spirit of Poole’s method:

\[S'_N(P) = \left(x^i \partial^j P \right)_{i+j=0}^{N-\deg_x,\partial} \]

\[
M'_N = \begin{pmatrix}
S'_N(L_1) & & \\
& \ddots & \\
-S'_N+1(1) & \cdots & -S'_N+1(1)
\end{pmatrix}.
\]

For \(\deg_{x,\partial} L_i \leq \delta \), a left kernel is ensured by the bound

\[
N \geq B' = \left[k\delta + \frac{(4k(k-1)\delta^2 + 1)^{1/2} - 3}{2} \right] \approx 2k\delta.
\]

Matrix of size \(O(k^3\delta^2) \) → linear algebra in \(O(k^3\omega \delta^{2\omega}) \).
Final Algorithm for Common Multiples of Minimal Order

Series of size $O(B'^2) \subset O(k^2\delta^2)$ instead of operators of size $O(k^3r^2d) \subset O(k^3\delta^3)$!

1. Compute truncated series solutions of the L_i at order $B'^2 + B'$. $O(kB'^2) \subset O(k^3\delta^2)$

2. Take a random linear combination of them. (same)

3. Derive its first B' derivatives. $O(k^3\delta^3)$

4. Compute a Hermite–Padé approximant. $O(B'^\omega M(B')) \subset \tilde{O}(k^{\omega+1}\delta^{\omega+1})$

5. Take any two CLMs and compute their GCRD. $O(r^\omega M(d)) \subset \tilde{O}(\delta^{\omega+1})$

This algo. = series variant of van Hoeij’s algo. + bounds.
Conclusions

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
<th>Best for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poole’s</td>
<td>$\tilde{O}(k^{3\omega} r^{3\omega} D)$</td>
<td></td>
</tr>
<tr>
<td>Ore’s</td>
<td>$\tilde{O}(k^{4} r^{4} D)$</td>
<td></td>
</tr>
<tr>
<td>van Hoeij’s</td>
<td>$\tilde{O}(k^{\omega+1} r^{\omega+1} D)$</td>
<td>large k, D; fixed r</td>
</tr>
<tr>
<td>Ours by S.–V.</td>
<td>$\tilde{O}(k^{2\omega} r^{\omega} D)$</td>
<td>large r; fixed k, D</td>
</tr>
<tr>
<td>Ours by P.–H.</td>
<td>$\tilde{O}(k^{\omega+1} \delta^{\omega+1})$</td>
<td>large k, r, D when $\delta \approx r \approx D$</td>
</tr>
</tbody>
</table>

$r, D \leq \delta \leq r + D$

When $k = 2$:

1. Li’s subresultants give LCLM in $O(r^{\omega} D + r\delta^{\omega})$.
2. Do those algorithms extend to eigenring calculations?