Using Wiedemann’s algorithm to compute the algebraic immunity

Frédéric Didier
INRIA, projet CODES
Outline

1. Introduction
2. Linear algebra and algebraic immunity
3. Wiedemann’s algorithm
4. Results
Part 1

Introduction
A stream cipher: the filtered LFSR

Encoding/Decoding:
XOR the keystream bits (z_i) with the message bits

Secret Key: the initial state of the pseudo random generator
Algebraic attacks principle

Algebraic Normal Form (ANF) of a Boolean function f:

$$f(x_1, \ldots, x_n) = \sum_{m \in F_2^n} f_m x_1^{m_1} \cdots x_n^{m_n} \quad f_m \in F_2$$

$$f(x) = \sum_{m \in F_2^n} f_m x^m$$

Basic idea: solve the algebraic system given by

$$f(L^i(s_1, \ldots, s_n)) = z_i \quad \forall i \geq 0$$

Problem: The degree of f is usually too high
Algebraic attacks [Courtois Meier 03]

If we find a low degree Boolean function g such that

$$\forall x \in \mathbb{F}_2^n \quad f(x)g(x) = 0$$

It is called an annihilator of f and we have

$$\forall x \in \mathbb{F}_2^n \quad f(x) = 1 \quad \implies \quad g(x) = 0$$

So we get a new system in the degree of g

$$g(L^i(s_1, \ldots, s_n)) = 0 \quad \text{for } i \geq 0 \text{ and } z_i = 1$$

Remark: when $z_i = 0$ we use annihilators of $1 + f$
Our issue: computing annihilators of f

We can use Gröbner basis:

Find low degree polynomial in the ideal

$$\langle 1 + f(X_1, \ldots, X_n), X_1^2 - X_1, \ldots, X_n^2 - X_n \rangle$$

But the linear algebra approach is more efficient in practice

Remark: We place ourselves in the case of a general f
Part 2

Linear algebra and algebraic immunity
Goal: existence/computation of relations

Let
• \(f \) be an \(n \)-variable Boolean function \((F_2^n \rightarrow F_2)\)
• \(d \) and \(e \) be given degrees \((e \geq d)\)

For normal algebraic attacks

\(g \) \hspace{1cm} \text{deg}(g) \leq d \text{ and } fg = 0

For fast algebraic attacks

\(g \) and \(h \) \hspace{1cm} \text{deg}(g) \leq d, \text{deg}(h) \leq e \text{ and } fg = h
Degree at most d Boolean function space

Using the Algebraic Normal Form, a g in this space can be written in a unique way as

$$g(x) = \sum_{|m| \leq d} g_m x^m$$

$|m| \overset{\text{def}}{=} \sum_i m_i$

Basis : $(x^m)_{|m| \leq d}$

Dimension : $D \overset{\text{def}}{=} \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}$

So we will represent g by D coefficients $(g_m)_{|m| \leq d}$ in \mathbb{F}_2
A Boolean functions g can be represented by its images list

$$g(0), g(1), \ldots, g(2^n - 1)$$

$\text{RM}(d,n)$ is by definition the space of all Boolean functions of degree at most d with this representation.

Previous slide: usual encoding for Reed-Muller codes
Degree d evaluation matrix

Let
- $\{m_1, \ldots, m_D\}$ an order on $\{m \in F^n_2, |m| \leq d\}$
- $\{x_1, \ldots, x_N\}$ a set of N points in F^n_2

$$V^d_{\{x_1, \ldots, x_N\}} \overset{\text{def}}{=} \begin{pmatrix} x_{i m_j} \\ \vdots \\ x_{i m_D} \end{pmatrix}_{i \in \{1, \ldots, N\}, j \in \{1, \ldots, D\}}$$

For g such that $g(x) = \sum_{i=1}^{D} g_{m_i} x^{m_i}$ \hspace{1cm} ($\deg(g) \leq d$)

$$V^d_{\{x_1, \ldots, x_N\}} \begin{pmatrix} g_{m_1} \\ \vdots \\ g_{m_D} \end{pmatrix} = \begin{pmatrix} g(x_1) \\ \vdots \\ g(x_N) \end{pmatrix}$$
Basic Algebraic attacks

Find g of degree $\leq d$ such that $fg = 0$

$$\forall x \in \{x, f(x) = 1\} \quad g(x) = 0$$

Finding g is the same as solving the $|f| \times D$ system

$$V^d_{\{x, f(x) = 1\}} \bar{g} = 0$$

where the D unknown coeffs of g are in the vector \bar{g}
Equivalent problems

$V_{F_2}^d$ is actually the usual generator matrix of $\text{RM}(d,n)$

Solving the system $V_{\{x_1,\ldots,x_N\}}^d \bar{g} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$

- codewords/functions for which only the values at positions x_i are known (and equal to y_i)

- Decoding over the erasure channel

- Multivariate interpolation problem
Fast Algebraic attacks

g of degree $\leq d$ and h of degree $\leq e$ such that $f g = h$

$$\forall x \in \mathbb{F}_2^n \quad f(x)g(x) + h(x) = 0$$

Finding g and h \iff solving the $2^n \times (E + D)$ system

$$\left(\text{Diag}(f(x)_{x \in \mathbb{F}_2^n}) \mathbf{V}^d_{\mathbb{F}_2^n} \mid \mathbf{V}^e_{\mathbb{F}_2^n} \right) \left(\begin{array}{c} \overline{g} \\ \overline{h} \end{array} \right) = 0$$
Fast Algebraic attacks - improved system

\[V^e_{\{x, |x| \leq e\}} \text{ is involutive} \]

So, given the equation \(h(x) = f(x)g(x) \) we have

\[V^e_{\{x, |x| \leq e\}} \bar{h} = \text{Diag}(f(x) |x| \leq e) V^d_{\{x, |x| \leq e\}} \bar{g} \]

\[\bar{h} = M \bar{g} \overset{\text{def}}{=} V^e_{\{x, |x| \leq e\}} \text{Diag}(f(x) |x| \leq e) V^d_{\{x, |x| \leq e\}} \bar{g} \]

and we get a new \(2^n \times D \) system (actually \((2^n - E') \times D \))

\[\left(\text{Diag}(f(x)_{x \in F_2^n}) V^d_{F_2^n} + V^e_{F_2^n} M \right) \bar{g} = 0 \]
Fast matrix vector product for V

Over \mathbb{F}_2^4, $V_{\mathbb{F}_2^4}^{\mathbb{F}_2^4} =$

Moebius Transform: Computable in $O(2^n \log 2^n)$ over \mathbb{F}_2^n
The issue in term of linear algebra

For both attacks, we get a matrix A

- Is the matrix A singular?
 - to assert the immunity

- Find elements in the kernel of A
 - to find relations and build an attack
Existing algorithms

Basic algorithm

▶ Gaussian elimination on A

[Armknecht Carlet Gaborit Künzli Meier Ruatta] EuroC 06
[Didier Tillich] FSE 06
[Braken Lano Preneel] ACISP 06

▶ Use structure to improve elimination

[Didier] Indocrypt 06

▶ Idea based on fast matrix vector product with A
Part 3
Wiedemann’s Algorithm
General Facts for an $N \times N$ matrix

- One of the algorithms designed to solve large sparse linear system
- Huge literature because of important applications (used in factorisation/discrete logarithm algorithms)
- Complexity in $O(N)$ matrix vector products
- Faster than Gaussian elimination as long as matrix vector product is faster than $O(N^2)$
Wiedemann’s Algorithm for a square matrix

Let \(A \) an \(N \times N \) matrix and \(b \) a vector in \(\mathbb{F}_2^N \)

The following Krylov sequence is linearly generated

\[
b, Ab, A^2b, \ldots, A^Nb, \ldots
\]

Let \(P_b \in \mathbb{F}_2[X] \) be its minimal polynomial, that is

the minimal degree polynomial such that \(P_b(A)b = 0 \)

\(P_b \) divide the minimal polynomial of \(A \), so \(\deg(P_b) \leq N \)
From P_b to our problem solution

Assume P_b is known and that

$$P_b(X) = c_0 + XQ(X) \quad Q(X) \in \mathbb{F}_2[X]$$

If $c_0 \neq 0$ (and therefore $c_0 = 1$) then $AQ(A)b = b$

► $Q(A)b$ is a solution x to the system $Ax = b$

If $c_0 = 0$ then $AQ(A)b = 0$ (in particular A is singular)

► $Q(A)b$ is a non-trivial kernel element of A
Computing \(P_b \) with Berlekamp-Massey

Choose a random vector \(u^t \) in \(\mathbb{F}_2^N \) then compute

\[
u.b, u.Ab, u.A^2b, \ldots, u.A^{2N}b\]

and its minimal polynomial \(P_{u,b} \) with Berlekamp-Massey

\[P_b \quad P_{u,b}/P_b \quad \text{and equality with probability} \quad \geq 1/(6 \log N)\]

Complexity

- \(2N \) matrix vector product of \(A \)
- \(O(N^2) \) for the Berlekamp-Massey part
Version we used to assert the immunity

Over \mathbb{F}_2 and for a random choice of b and u, if A is singular then $X/P_{u,b}$ with probability $\geq 1/4$

A singular?
- Try i different values of u and b
- If $X/P_{u,b}$ then yes
- If $\deg(P_{u,b}) = N$ and $X \nmid P_{u,b}$ then no
- Otherwise, no with $pb \geq 1 - (3/4)^i$
If A is a $N \times k$ matrix, an algorithm exist to construct a “random” sparse $k \times N$ matrix Q such that

- If A is of full rank, then QA is a $k \times k$ non-singular matrix with a probablity bounded away from 0
- The number of 1 in Q is in $O(N \log N)$

Now:

- We can just run Wiedemann’s algorithm on QA
- However, more pass are needed
Part 4

Results
Degree d immunity of a n-variable Boolean function

Square case:
- $O(D)$ matrix vector products in $O(n2^n)$
- $O(2^n)$ memory
- Moebius transform is vectorizable (SSE2)

Non square case:
- $O(D)$ evaluations in $O(n2^n)$
- $O(n2^n)$ memory for storing the matrix Q
- product by Q is not vectorizable
Complexity summary for normal AA

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>complexity</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian elimination</td>
<td>$O(</td>
<td>f</td>
</tr>
<tr>
<td>Eurocrypt 2006(^{(1)})</td>
<td>$O(D^2)$</td>
<td>$O(D^2)$</td>
</tr>
<tr>
<td>FSE 2006(^{(2)})</td>
<td>$O(D)$, fixed d, $n \to \infty$</td>
<td>$O(D)$</td>
</tr>
<tr>
<td>Wiedemann’s</td>
<td>$O(n2^n D)$</td>
<td>$O(n2^n)$</td>
</tr>
</tbody>
</table>

\(^{(1)}\): Average complexity, worst should be around $O(2^n D)$

\(^{(2)}\): Average complexity and memory to assert the immunity only, in the general case no better results than the Gaussian elimination, but a lot faster in practice
Complexity summary for Fast AA

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>complexity</th>
<th>memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian elimination</td>
<td>$O(2^n(E + D)^2)$</td>
<td>$O((E + D)^2)$</td>
</tr>
<tr>
<td>Eurocrypt 2006$^{(1)}$</td>
<td>$O(ED^2)$</td>
<td>$O(D^2)$</td>
</tr>
<tr>
<td>ACISP 2006$^{(1)}$</td>
<td>$O(ED^2 + E^2)$</td>
<td>$O(ED)$</td>
</tr>
<tr>
<td>FSE 2006$^{(2)}$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>Wiedemann’s$^{(3)}$</td>
<td>$O(n2^nD)$</td>
<td>$O(n2^n)$</td>
</tr>
</tbody>
</table>

$^{(1)}$: Average complexity, worst should be around $O(2^nDE)$

$^{(2)}$: Adaptable to this case, should give the same kind of result as for normal AA, but no theoretical proof

$^{(3)}$: Best algorithm for most values of the degree constraint
Degree d immunity for a n-variable balanced Boolean function ($n = 2d + 1$)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>d, n</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian elimination</td>
<td>$d = 8 \ n = 17$</td>
<td>a few hours</td>
</tr>
<tr>
<td>Eurocrypt 2006</td>
<td>$d = 9 \ n = 19$</td>
<td>-</td>
</tr>
<tr>
<td>FSE 2006</td>
<td>$d = 9 \ n = 19$</td>
<td>6h</td>
</tr>
<tr>
<td>Wiedemann’s algorithm</td>
<td>$d = 9 \ n = 19$</td>
<td>102s</td>
</tr>
<tr>
<td>(one pass)</td>
<td>$d = 11 \ n = 23$</td>
<td>11h</td>
</tr>
<tr>
<td></td>
<td>$d = 12 \ n = 25$</td>
<td>20d</td>
</tr>
</tbody>
</table>
Wiedemann’s algo for non-square case

We loose more than a factor 32 (no vectorization)

- for AA, same limit as with previous algo ($n = 19$)
- Same limit for FAA! almost no dependance on e

Improvement: by using block Wiedemann’s algorithm we can expect the same kind of performance
Advantages of this approach

- Uses well-known algorithms and has good complexity
- Memory efficient → can deal with many variables
- Almost the same algorithm for AA and FAA
- Leads to an efficient decoding over the erasure channel for all codes that can be generated efficiently