Polynomial approximation and floating-point numbers
Algorithms Project Seminar

Sylvain Chevillard
Advisors: Nicolas Brisebarre and Jean-Michel Muller
joint work with Serge Torres

Laboratoire de l’informatique du parallélisme
Arenaire team

June, 12. 2007
Contents

Scope of my researches

Approximation theory

Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete case

Conclusion
Presentation of Arenaire

- Arenaire team: the main goal is the practical computation of mathematical functions.
Presentation of Arenaire

- Arenaire team: the main goal is the practical computation of mathematical functions.
- General scheme:
 - we want to compute a mathematical operator \(\Theta \);
 - we may use an approximation \(\hat{\Theta} \) of \(\Theta \);
 - we implement it with inexact arithmetic, controlling the round-off error.
Presentation of Arenaire

- Arenaire team: the main goal is the practical computation of mathematical functions.

- General scheme:
 - we want to compute a mathematical operator \(\Theta \);
 - we may use an approximation \(\hat{\Theta} \) of \(\Theta \);
 - we implement it with inexact arithmetic, controlling the round-off error.

- The scheme covers:
 - hardware implementation of mathematical functions;
 - software implementation targeting IEEE correct rounding in double precision format;
 - certified software implementation with arbitrary high precision;
 - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)
Presentation of Arenaire

- Arenaire team: the main goal is the practical computation of mathematical functions.
- General scheme:
 - we want to compute a mathematical operator Θ;
 - we may use an approximation $\hat{\Theta}$ of Θ;
 - we implement it with inexact arithmetic, controlling the round-off error.
- The scheme covers:
 - hardware implementation of mathematical functions;
 - software implementation targeting IEEE correct rounding in double precision format;
 - certified software implementation with arbitrary high precision;
 - certified implementation of numerical algorithms (QR decomposition, lattice reduction...)
Why an approximation?

Let f be a real valued function: $f : \mathbb{R} \rightarrow \mathbb{R}$.

Graph of $f : x \mapsto \arctan(x)$

Graph of $f : x \mapsto \arctan(x)$
Why an approximation?

- Let f be a real valued function: $f : \mathbb{R} \to \mathbb{R}$.
- The function may take irrational values: $f(x)$ is thus not exactly representable.

\[\arctan(1) = \frac{\pi}{4} = 0.78539... \]
Why an approximation?

Let f be a real valued function: $f : \mathbb{R} \rightarrow \mathbb{R}$.

The function may take irrational values: $f(x)$ is thus not exactly representable.

We can only compute approximated values and hopefully bound the approximation error.

$$\arctan(1) = 0.785 + \varepsilon, \ |\varepsilon| < 4e^{-4}$$
About the error of approximation

Consider a closed interval \([a, b]\). Replacing \(f\) by a polynomial \(p\) leads at each point \(x\) to:

\[
\|\epsilon\|_\infty = \max_{x \in [a, b]} \{|\epsilon(x)|\}
\]

\((n : \text{degree of the polynomial})\)
Consider a closed interval $[a, b]$. Replacing f by a polynomial p leads at each point x to:

- an absolute error $\varepsilon(x) = f(x) - p(x)$;
- a relative error $\delta(x) = \varepsilon(x)/f(x)$.

$(n : \text{degree of the polynomial})$
About the error of approximation

Consider a closed interval \([a, b]\). Replacing \(f\) by a polynomial \(p\) leads at each point \(x\) to :

- an absolute error \(\varepsilon(x) = f(x) - p(x)\);
- a relative error \(\delta(x) = \varepsilon(x)/f(x)\).

The worst approximation is reached when \(|\varepsilon(x)|\) has its maximal value.

\((n : \text{degree of the polynomial})\)
About the error of approximation

- Consider a closed interval \([a, b]\). Replacing \(f\) by a polynomial \(p\) leads at each point \(x\) to:
 - an absolute error \(\varepsilon(x) = f(x) - p(x)\);
 - a relative error \(\delta(x) = \varepsilon(x)/f(x)\).
- The worst approximation is reached when \(|\varepsilon(x)|\) has its maximal value.

\[
\|\varepsilon\|_\infty = \max_{x \in [a, b]} \{|\varepsilon(x)|\}
\]

\((n: \text{degree of the polynomial})\)
Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance: a power series and a formally computed bound on the error.
Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance: a power series and a formally computed bound on the error.

- Remark: a truncated power series is a polynomial \rightarrow especially nice to evaluate: it requires only additions and multiplications (fast on modern processors).
Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance: a power series and a formally computed bound on the error.

- Remark: a truncated power series is a polynomial especially nice to evaluate: it requires only additions and multiplications (fast on modern processors).

- Truncated power series are useful but...
Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance: a power series and a formally computed bound on the error.

- Remark: a truncated power series is a polynomial especially nice to evaluate: it requires only additions and multiplications (fast on modern processors).

- Truncated power series are useful but... ...usually inefficient in term of number of operations.

 $\exp(x)$ on $[-1; 2]$ with an absolute error ≤ 0.01:

 7 terms of the series / a degree 4 polynomial is sufficient.
Focus on polynomial approximation

- The definition often gives a natural way to compute approximations of f. For instance: a power series and a formally computed bound on the error.

- Remark: a truncated power series is a polynomial especially nice to evaluate: it requires only additions and multiplications (fast on modern processors).

- Truncated power series are useful but... usually inefficient in term of number of operations.
 - $\exp(x)$ on $[-1; 2]$ with an absolute error ≤ 0.01: 7 terms of the series / a degree 4 polynomial is sufficient.

- Natural question: what degree should have a polynomial to give a suitable approximation?
Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- Th. (Weierstrass) : the set $\mathbb{R}[X]$ is dense in $C([a, b])$. Bernstein gave an effective polynomial sequence.
Reminder of approximation theory

- Polynomial approximation theory has been deeply studied since the XIXth century.
- Th. (Weierstrass) : the set $\mathbb{R}[X]$ is dense in $C([a, b])$. Bernstein gave an effective polynomial sequence.
- Th. (Chebyshev) : given n and f there is a unique polynomial p of degree $\leq n$ minimizing $\|f - p\|_\infty$.
Reminder of approximation theory (2)

- Th. (Chebyshev) : characterization of the optimal error.

\[n + 2 \text{ oscillations} \]
Reminder of approximation theory (2)

- Th. (Chebyshev) : characterization of the optimal error.
- Th. (La Vallée Poussin) : links the quality of an approximation with its error function.
Reminder of approximation theory (2)

- Th. (Chebyshev) : characterization of the optimal error.
- Th. (La Vallée Poussin) : links the quality of an approximation with its error function.
- Remez’ algorithm : given n, computes the optimal polynomial of degree $\leq n$ (called minimax).
Representing real numbers in computers

- In general a real number is not finitely representable.
 - one has to choose a subset S and approximate the real line by the elements of S.

A usual choice: floating-point numbers (IEEE-754 standard).

A floating-point number with radix β and precision t is a number of the form $m \cdot \beta^e$ where:

- $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
- $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $\llbracket e_{\min}, e_{\max} \rrbracket$.

IEEE double format: $\beta = 2, t = 53, e \in \llbracket -1074, 971 \rrbracket$.

From now on, we will assume that $\llbracket e_{\min}, e_{\max} \rrbracket = \llbracket -\infty, +\infty \rrbracket$.

Sylvain Chevillard
Representing real numbers in computers

- In general a real number is not finitely representable.
 - One has to choose a subset S and approximate the real line by the elements of S.
- A usual choice: floating-point numbers (IEEE-754 standard).
Representing real numbers in computers

- In general a real number is not finitely representable.
 - one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice: floating-point numbers (IEEE-754 standard).
- A floating-point number with radix β and precision t is a number of the form
 $$m \cdot \beta^e$$

 where:
 - $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
 - $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.

 IEEE double format: $\beta = 2$, $t = 53$, and $e \in [-1074, 971]$.
 From now on, we will assume that $[e_{\min}, e_{\max}] = [-\infty, +\infty]$.

Representing real numbers in computers

- In general a real number is not finitely representable. one has to choose a subset S and approximate the real line by the elements of S.
- A usual choice : floating-point numbers (IEEE-754 standard).
- A floating-point number with radix β and precision t is a number of the form
 $$m \cdot \beta^e$$
 where :
 - $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
 - $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\min}, e_{\max}]$.
- IEEE double format : $\beta = 2$, $t = 53$, and $e \in [-1074, 971]$.
Representing real numbers in computers

- In general a real number is not finitely representable. One has to choose a subset S and approximate the real line by the elements of S.
- A usual choice: floating-point numbers (IEEE-754 standard).
- A floating-point number with radix β and precision t is a number of the form $m \cdot \beta^e$ where:
 - $m \in \mathbb{Z}$ is the mantissa and is written with exactly t digits;
 - $e \in \mathbb{Z}$ is the exponent. It is usually bounded in a range $[e_{\text{min}}, e_{\text{max}}]$.
- IEEE double format: $\beta = 2$, $t = 53$, and $e \in [-1074, 971]$.
- From now on, we will assume that $[e_{\text{min}}, e_{\text{max}}] = [-\infty, +\infty]$.
Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.

Naive method to obtain a polynomial approximation of \(f \):

- compute the real minimax \(p^* \);
- replace each coefficient \(a_i \) of \(p^* \) by the nearest floating-point number \(\hat{a}_i \);
- use \(\hat{p} = \hat{a}_0 + \hat{a}_1 X + \cdots + \hat{a}_n X^n \).

\(\hat{p} \) may be far from being optimal.

Example with \(f(x) = \log_2 \left(1 + 2^{-x} \right) \), \(n = 6 \), on \([0;1]\) with single precision coefficients (24 bits):

<table>
<thead>
<tr>
<th>Minimax</th>
<th>Naive method</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 \times 10^{-10}</td>
<td>1.19 \times 10^{-10}</td>
<td>1.06 \times 10^{-10}</td>
</tr>
</tbody>
</table>
Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of \(f \):
 - compute the real minimax \(p^* \);
 - replace each coefficient \(a_i \) of \(p^* \) by the nearest floating-point number \(\hat{a}_i \);
 - use \(\hat{p} = \hat{a}_0 + \hat{a}_1 X + \cdots + \hat{a}_n X^n \).
Polynomials with floating-point coefficients

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of f:
 - compute the real minimax p^*;
 - replace each coefficient a_i of p^* by the nearest floating-point number \hat{a}_i;
 - use $\hat{p} = \hat{a}_0 + \hat{a}_1 X + \cdots + \hat{a}_n X^n$.
- \hat{p} may be far from being optimal.
Polynomials with floating-point coefficients

▶ Each coefficient of a polynomial is represented by a floating-point number.
▶ Naive method to obtain a polynomial approximation of f:
 ▶ compute the real minimax p^*;
 ▶ replace each coefficient a_i of p^* by the nearest floating-point number \hat{a}_i;
 ▶ use $\hat{p} = \hat{a}_0 + \hat{a}_1 X + \cdots + \hat{a}_n X^n$.
▶ \hat{p} may be far from being optimal.
▶ Example with $f(x) = \log_2(1 + 2^{-x})$, $n = 6$, on $[0; 1]$ with single precision coefficients (24 bits).

<table>
<thead>
<tr>
<th>Minimax</th>
<th>Naive method</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8.3 \cdot 10^{-10}$</td>
<td>$119 \cdot 10^{-10}$</td>
<td>$10.06 \cdot 10^{-10}$</td>
</tr>
</tbody>
</table>
Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically $t < 10, n < 20$).
Previous works

- W. Kahan claims to have studied the question and proposed an efficient method. No published work, no draft.
- D. Kodek has studied a similar problem in signal processing. Limited to small precision and degree (typically $t < 10$, $n < 20$).
- N. Brisebarre, J.-M. Muller and A. Tisserand have proposed an approach by linear programming (the implementation relies on P. Feautrier’s tool PIP).
Method of Brisebarre, Muller and Tisserand

- Idea: they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of \mathbb{R}^{n+1}.
Method of Brisebarre, Muller and Tisserand

- Idea: they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of \mathbb{R}^{n+1}.
- This approach is certified...
Method of Brisebarre, Muller and Tisserand

- Idea: they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of \mathbb{R}^{n+1}.
- This approach is certified...
- ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).
Method of Brisebarre, Muller and Tisserand

- Idea: they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of \mathbb{R}^{n+1}.
- This approach is certified...
- ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).
- But:
 - its time is exponential;
Method of Brisebarre, Muller and Tisserand

- Idea: they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of \mathbb{R}^{n+1}.
- This approach is certified...
- ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).
- But:
 - its time is exponential;
 - it is very sensitive to some parameters.
Method of Brisebarre, Muller and Tisserand

➤ Idea: they reduce the initial problem to the problem of finding the points with integer coordinates in a polytope of \mathbb{R}^{n+1}.
➤ This approach is certified...
➤ ... and flexible (may be used to find real minimax, constrained real minimax, polynomial with floating-point coefficients, odd polynomials, etc.).
➤ But:
 ➤ its time is exponential;
 ➤ it is very sensitive to some parameters.
➤ We developed a new method:
 ➤ fast (it is proven to run in polynomial time);
 ➤ heuristic (there is no proof that the result is always tight);
 ➤ with good practical results.
Formalization of the problem

Problem: given n and a floating-point format, find (one of) the polynomial(s) p of degree $\leq n$ with floating-point coefficients minimizing $\|p - f\|_\infty$.
Formalization of the problem

Problem: given n and a floating-point format, find (one of) the polynomial(s) p of degree $\leq n$ with floating-point coefficients minimizing $\|p - f\|_{\infty}$.

Remark: the existence is still ensured. The unicity may be lost.
Formalization of the problem

- Problem: given \(n \) and a floating-point format, find (one of) the polynomial(s) \(p \) of degree \(\leq n \) with floating-point coefficients minimizing \(\| p - f \|_\infty \).
- Remark: the existence is still ensured. The unicity may be lost.
- A simplification: we may try to guess the value of each \(e_i \) (assuming that the coefficients of \(p \) and \(p^* \) have the same order of magnitude)
 \(\iff \) if \(e_i \) is correctly guessed, we are reduced to find \(m_i \in \mathbb{Z} \) such that
 \[
 \left\| f(x) - \sum_{i=0}^{n} m_i \cdot \beta^{e_i} x^i \right\|_\infty
 \]
 is minimal.
Description of our method

Our goal: find \(p \) approximating \(f \) and with the following form:

\[
m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} X + \cdots + m_n \cdot \beta^{e_n} X^n
\]
Description of our method

Our goal: find \(p \) approximating \(f \) and with the following form:

\[
m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} X + \cdots + m_n \cdot \beta^{e_n} X^n
\]

- We use the idea of interpolation:

\[
\begin{bmatrix}
f(x_0) \\
f(x_1) \\
\vdots \\
f(x_n)
\end{bmatrix}
\approx
\begin{bmatrix}
m_0 \\
m_1 \\
\vdots \\
m_n
\end{bmatrix}
\begin{bmatrix}
\beta^{e_0} \\
\beta^{e_1} X \\
\vdots \\
\beta^{e_n} X^n
\end{bmatrix}
\]
Description of our method

Our goal: find \(p \) approximating \(f \) and with the following form:

\[
m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} x + \cdots + m_n \cdot \beta^{e_n} x^n
\]

- We use the idea of interpolation:
 - we choose \(n + 1 \) points \(x_0, \cdots, x_n \) in \([a, b]\);
Description of our method

Our goal: find \(p \) approximating \(f \) and with the following form:

\[
m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} x + \cdots + m_n \cdot \beta^{e_n} x^n
\]

- We use the idea of interpolation:
 - we choose \(n + 1 \) points \(x_0, \ldots, x_n \) in \([a, b]\);
 - we search \(m_0, \ldots, m_n \) such that for all \(i \)
 \[
p(x_i) = m_0 \cdot \beta^{e_0} + m_1 \cdot \beta^{e_1} x_i + \cdots + m_n \cdot \beta^{e_n} x_i^n \approx f(x_i)
 \]
Description of our method

Our goal : find \(p \) approximating \(f \) and with the following form :

\[
m_0 \cdot \beta^e_0 + m_1 \cdot \beta^e_1 x + \cdots + m_n \cdot \beta^e_n x^n
\]

- We use the idea of interpolation :
 - we choose \(n + 1 \) points \(x_0, \cdots, x_n \) in \([a, b]\);
 - we search \(m_0, \cdots, m_n \) such that for all \(i \)

\[
p(x_i) = m_0 \cdot \beta^e_0 + m_1 \cdot \beta^e_1 x_i + \cdots + m_n \cdot \beta^e_n x_i^n \simeq f(x_i) .
\]

- Rewritten with vectors :

\[
\begin{pmatrix}
\beta^e_0 \\
\beta^e_0 \\
\vdots \\
\beta^e_0
\end{pmatrix}
m_0 + \cdots +
\begin{pmatrix}
\beta^e_n \cdot x_0^n \\
\beta^e_n \cdot x_1^n \\
\vdots \\
\beta^e_n \cdot x_n^n
\end{pmatrix}
\begin{pmatrix}
f(x_0) \\
f(x_1) \\
\vdots \\
f(x_n)
\end{pmatrix}
\simeq \Gamma \in \mathbb{R}^{n+1}
\]

\(\Gamma \) of the form \(\mathbb{Z}b_0 + \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n \).
Notions about lattices
Let \((\vec{b}_1, \cdots, \vec{b}_n)\) be a basis of a real vector space.
Notions about lattices

Let \((\vec{b}_1, \cdots, \vec{b}_n)\) be a basis of a real vector space. The set of all integer combinations of the \(\vec{b}_i\) is called a lattice:

\[
\Gamma = \mathbb{Z}\vec{b}_1 + \mathbb{Z}\vec{b}_2 + \cdots + \mathbb{Z}\vec{b}_n.
\]
Notions about lattices

Let \((\vec{b}_1, \cdots, \vec{b}_n)\) be a basis of a real vector space. The set of all integer combinations of the \(\vec{b}_i\) is called a lattice:

\[
\Gamma = \mathbb{Z}\vec{b}_1 + \mathbb{Z}\vec{b}_2 + \cdots + \mathbb{Z}\vec{b}_n.
\]

In general, a lattice has infinitely many bases.
Notions about lattices

Let \((\vec{b}_1, \cdots, \vec{b}_n)\) be a basis of a real vector space. The set of all integer combinations of the \(\vec{b}_i\) is called a lattice:

\[
\Gamma = \mathbb{Z}\vec{b}_1 + \mathbb{Z}\vec{b}_2 + \cdots + \mathbb{Z}\vec{b}_n.
\]

In general, a lattice has infinitely many bases.
Notions about lattices

Let \((\vec{b}_1, \cdots, \vec{b}_n)\) be a basis of a real vector space. The set of all integer combinations of the \(\vec{b}_i\) is called a lattice:

\[
\Gamma = \mathbb{Z}\vec{b}_1 + \mathbb{Z}\vec{b}_2 + \cdots + \mathbb{Z}\vec{b}_n.
\]

In general, a lattice has infinitely many bases.
Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n:

$$\| \overrightarrow{x} \|^2 = \sum_{i=1}^{n} x_i^2.$$

- Shortest vector problem (SVP).
Algorithmic problems

In the following we consider the euclidean norm on \(\mathbb{R}^n \):

\[
\| \mathbf{x} \|^2 = \sum_{i=1}^{n} x_i^2.
\]

- Shortest vector problem (SVP).
 - Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor \(\sqrt{2} \).
Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n:

$$\|\vec{x}\|^2 = \sum_{i=1}^{n} x_i^2.$$

- Shortest vector problem (SVP).
 - Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
 - There is no polynomial algorithm known to approximate SVP within a factor $f(n)$ where f is a polynomial.
Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n:

$$\| \overrightarrow{x} \|^2 = \sum_{i=1}^{n} x_i^2.$$

- **Shortest vector problem (SVP).**
 - Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
 - There is no polynomial algorithm known to approximate SVP within a factor $f(n)$ where f is a polynomial.

- **Shortest basis problem (SBP).**
 - Given a basis of a lattice L, find a basis (b_1, \cdots, b_n) of L for which $\|b_1\| \cdot \|b_2\| \cdots \|b_n\|$ is minimal.
Algorithmic problems

In the following we consider the euclidean norm on \mathbb{R}^n:

$$\|\vec{x}\|^2 = \sum_{i=1}^{n} x_i^2.$$

- Shortest vector problem (SVP).
 - Ajtai (1997) and Micciancio (1998) showed that SVP is NP-hard under probabilistic randomized reduction; it is NP-hard to approximate SVP within a factor $\sqrt{2}$.
 - There is no polynomial algorithm known to approximate SVP within a factor $f(n)$ where f is a polynomial.

- Shortest basis problem (SBP).
 - Given a basis of a lattice L, find a basis (b_1, \cdots, b_n) of L for which $\|b_1\| \cdot \|b_2\| \cdots \|b_n\|$ is minimal.
 - It is NP-hard.
Algorithmic problems

- Closest vector problem (CVP).

\[\overrightarrow{c_1}, \overrightarrow{c_2} \]
Algorithmic problems

- Closest vector problem (CVP).
 - Goldreich and al. : CVP is not easier than SVP.
LLL algorithm

LLL algorithm

- Given a basis \((b_1, \ldots, b_n)\) of a lattice, the LLL algorithm gives a basis \((c_1, \ldots, c_n)\) composed of pretty short vectors.

$$\|c_1\| \leq 2^{\frac{n-1}{2}} \lambda_1(L)$$

where \(\lambda_1(L)\) denotes the norm of a shortest nonzero vector of \(L\).

LLL terminates in at most \(O(n^6 \ln 3 B)\) operations with \(B = \max \|b_i\|_2\).

Very good practical results compared to the theoretical bounds.
LLL algorithm

- Given a basis \((b_1, \ldots, b_n)\) of a lattice, the LLL algorithm gives a basis \((c_1, \ldots, c_n)\) composed of pretty short vectors.
 \[||c_1|| \leq 2^{(n-1)/2} \lambda_1(L) \]
 where \(\lambda_1(L)\) denotes the norm of a shortest nonzero vector of \(L\).

- LLL terminates in at most \(O(n^6 \ln^3 B)\) operations with
 \(B = \max ||b_i||^2\).
LLL algorithm

- Given a basis \((b_1, \ldots, b_n)\) of a lattice, the LLL algorithm gives a basis \((c_1, \ldots, c_n)\) composed of pretty short vectors.

\[||c_1|| \leq 2^{(n-1)/2} \lambda_1(L) \]

where \(\lambda_1(L)\) denotes the norm of a shortest nonzero vector of \(L\).

- LLL terminates in at most \(O(n^6 \ln^3 B)\) operations with \(B = \max ||b_i||^2\).

- Very good practical results compared to the theoretical bounds.
LLL reduction

- Gram-Schmidt orthogonalization: to any basis \((b_1, \cdots, b_n)\) of a vector space is associated an orthogonal basis \((b_1^*, \cdots, b_n^*)\) such that

\[
\text{Span}(b_1, \cdots, b_j) = \text{Span}(b_1^*, \cdots, b_j^*) \text{ for all } j.
\]
LLL reduction

▶ Gram-Schmidt orthogonalization: to any basis \((b_1, \cdots, b_n)\) of a vector space is associated an orthogonal basis \((b_1^*, \cdots, b_n^*)\) such that \(\text{Span}(b_1, \cdots, b_j) = \text{Span}(b_1^*, \cdots, b_j^*)\) for all \(j\).

Remark: one may choose it so that \(b_1 = b_1^*\).
LLL reduction

- Gram-Schmidt orthogonalization: to any basis \((b_1, \cdots, b_n)\) of a vector space is associated an orthogonal basis
 \((b_1^*, \cdots, b_n^*)\) such that
 \[\text{Span}(b_1, \cdots, b_j) = \text{Span}(b_1^*, \cdots, b_j^*) \] for all \(j\).
 Remark: one may choose it so that \(b_1 = b_1^*\).

- Prop.: if \((b_1, \cdots, b_n)\) is the basis of a lattice \(L\),
 \[\lambda_1(L) \geq \min \|b_j^*\| \].
LLL reduction

- Gram-Schmidt orthogonalization: to any basis \((b_1, \cdots, b_n)\) of a vector space is associated an orthogonal basis \((b_1^*, \cdots, b_n^*)\) such that
 \[\text{Span}(b_1, \cdots, b_j) = \text{Span}(b_1^*, \cdots, b_j^*) \]
 for all \(j\).
 Remark: one may choose it so that \(b_1 = b_1^*\).

- Prop.: if \((b_1, \cdots, b_n)\) is the basis of a lattice \(L\),
 \[\lambda_1(L) \geq \min \|b_j^*\|. \]

- Idea of LLL algorithm: control the Gram-Schmidt basis to make \(b_1^* = b_1\) minimal among the vectors of the orthogonal basis.
LLL reduction

- **Gram-Schmidt orthogonalization**: to any basis \((b_1, \cdots, b_n)\) of a vector space is associated an orthogonal basis \((b_1^*, \cdots, b_n^*)\) such that \(\text{Span}(b_1, \cdots, b_j) = \text{Span}(b_1^*, \cdots, b_j^*)\) for all \(j\).

Remark: one may choose it so that \(b_1 = b_1^*\).

- **Prop.**: if \((b_1, \cdots, b_n)\) is the basis of a lattice \(L\), \(\lambda_1(L) \geq \min \|b_j^*\|\).

- **Idea of LLL algorithm**: control the Gram-Schmidt basis to make \(b_1^* = b_1\) minimal among the vectors of the orthogonal basis.

- **Babai’s algorithm**: uses the LLL algorithm to solve an approximation of CVP.
A concrete case

- Example coming from a collaboration with John Harrison from Intel.

He asked for a polynomial minimizing the absolute error approximating $f: x \mapsto 2x - 1$ on $[-\frac{1}{16}, \frac{1}{16}]$ with a degree 9 polynomial.

A double extended number has 64 bits of mantissa. He actually wants to have approximately 74 correct bits (i.e. $\varepsilon \approx 5.30 \times 10^{-23}$).
A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
 - approximating $f : x \mapsto \frac{2^x - 1}{x}$
 - on $[-1/16, 1/16]$
 - with a degree 9 polynomial.
A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error
 - approximating \(f : x \mapsto \frac{2^x - 1}{x} \)
 - on \([-1/16, 1/16]\)
 - with a degree 9 polynomial.
 - a degree 0 coefficient of the form : \(a_{0h} + a_{0l} \) where \(a_{0h} \) and \(a_{0l} \)
 are double extended numbers
 - other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.
A concrete case

- Example coming from a collaboration with John Harrison from Intel.
- He asked for a polynomial minimizing the absolute error approximating $f : x \mapsto \frac{2^x - 1}{x}$ on $[-1/16, 1/16]$ with a degree 9 polynomial.
- A degree 0 coefficient of the form: $a_{0h} + a_{0l}$ where a_{0h} and a_{0l} are double extended numbers.
- Other coefficients are double extended numbers.
- A double extended number has 64 bits of mantissa.
- He actually wants to have approximately 74 correct bits. (i.e. $\varepsilon \approx 5.30e^{-23}$)
First try

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 8 minimax</th>
<th>Degree 9 minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30e−23</td>
<td>40.1e−23</td>
<td>0.07897e−23</td>
</tr>
</tbody>
</table>

\leftrightarrow degree 9 should be a good choice.
First try

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 8 minimax</th>
<th>Degree 9 minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30e−23</td>
<td>40.1e−23</td>
<td>0.07897e−23</td>
</tr>
</tbody>
</table>

degree 9 should be a good choice.

How to choose the points?
First try

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 8 minimax</th>
<th>Degree 9 minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.30e^{-23}$</td>
<td>$40.1e^{-23}$</td>
<td>$0.07897e^{-23}$</td>
</tr>
</tbody>
</table>

\rightarrow degree 9 should be a good choice.

▶ How to choose the points?

▶ We need $n + 1$ points.
First try

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 8 minimax</th>
<th>Degree 9 minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30e−23</td>
<td>40.1e−23</td>
<td>0.07897e−23</td>
</tr>
</tbody>
</table>

degree 9 should be a good choice.

▶ How to choose the points?

▶ We need $n + 1$ points.

▶ They should correspond to the interpolation intuition.
First try

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 8 minimax</th>
<th>Degree 9 minimax</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.30e-23$</td>
<td>$40.1e-23$</td>
<td>$0.07897e-23$</td>
</tr>
</tbody>
</table>

\rightarrow degree 9 should be a good choice.

▶ How to choose the points?

▶ We need $n + 1$ points.
▶ They should correspond to the interpolation intuition.
▶ Chebyshev’s theorem gives $n + 1$ such points.
First try : results

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 9 minimax</th>
<th>our polynomial p_1</th>
<th>naive method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.30e-23$</td>
<td>$0.07897e-23$</td>
<td>$5.32e-23$</td>
<td>$40.35e-23$</td>
</tr>
</tbody>
</table>
First try : results

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 9 minimax</th>
<th>our polynomial p_1</th>
<th>naive method</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30×10^{-23}</td>
<td>0.07897×10^{-23}</td>
<td>5.32×10^{-23}</td>
<td>40.35×10^{-23}</td>
</tr>
</tbody>
</table>

.pretty good but...

- Our polynomial does not respect the interpolation constraint.
First try : results

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 9 minimax</th>
<th>our polynomial p_1</th>
<th>naive method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.30e-23$</td>
<td>$0.07897e-23$</td>
<td>$5.32e-23$</td>
<td>$40.35e-23$</td>
</tr>
</tbody>
</table>

→ pretty good but...

▶ Our polynomial does not respect the interpolation constraint.

▶ degree 1 coefficient of p_1:

\[
a_1 = \circ(\log(2)^2/2)
\]
First try: results

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 9 minimax</th>
<th>our polynomial p_1</th>
<th>naive method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.30e-23$</td>
<td>$0.07897e-23$</td>
<td>$5.32e-23$</td>
<td>$40.35e-23$</td>
</tr>
</tbody>
</table>

→ pretty good but...

- Our polynomial does not respect the interpolation constraint.
- degree 1 coefficient of p_1:

 $$a_1 = o(\log(2)^2/2)$$

→ the slope at 0 is very constrained.
First try : results

<table>
<thead>
<tr>
<th>Target</th>
<th>Degree 9 minimax</th>
<th>our polynomial p_1</th>
<th>naive method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.30e-23$</td>
<td>$0.07897e-23$</td>
<td>$5.32e-23$</td>
<td>$40.35e-23$</td>
</tr>
</tbody>
</table>

\hookrightarrow pretty good but...

- Our polynomial does not respect the interpolation constraint.
 - degree 1 coefficient of p_1:

 $$a_1 = o(\log(2)^2/2)$$

 \rightarrow the slope at 0 is very constrained.
 - we have to take it into account.
Second try

- The polytope approach confirms that a_1 has a constrained value.
Second try

- The polytope approach confirms that a_1 has a constrained value.
- We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f - a_1 X$.
Second try

- The polytope approach confirms that a_1 has a constrained value.
- We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f - a_1 X$.

<table>
<thead>
<tr>
<th>Degree 9 minimax</th>
<th>Constrained optimum</th>
<th>p_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.07897e-23$</td>
<td>$4.44e-23$</td>
<td>$5.32e-23$</td>
</tr>
</tbody>
</table>
Second try

- The polytope approach confirms that a_1 has a constrained value.
- We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f - a_1 X$.

<table>
<thead>
<tr>
<th>Degree 9 minimax</th>
<th>Constrained optimum</th>
<th>p_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.07897e-23$</td>
<td>$4.44e-23$</td>
<td>$5.32e-23$</td>
</tr>
</tbody>
</table>

- We have only 9 points, but now only 9 unknowns: it is OK.
Second try

► The polytope approach confirms that a_1 has a constrained value.
► We compute the best real polynomial of the form $a_0 + a_2 X^2 + \cdots + a_9 X^9$ approximating $f - a_1 X$.

<table>
<thead>
<tr>
<th>Degree 9 minimax</th>
<th>Constrained optimum</th>
<th>p_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.07897e-23$</td>
<td>$4.44e-23$</td>
<td>$5.32e-23$</td>
</tr>
</tbody>
</table>

► We have only 9 points, but now only 9 unknowns: it is OK.
► This time, our polynomial p_2 gives an error of $4.44e-23$ and is practically optimal.
Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.
Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is not proven, but works well in practice and gives certified results with help of the polytope approach.
- The algorithm is flexible: each coefficient may use a different floating-point format, one may search polynomial with additional constraints.
Future work

- We need a good algorithm to find constrained minimax.
Future work

- We need a good algorithm to find constrained minimax.
- Remez’ algorithm is not sufficient.
Future work

- We need a good algorithm to find constrained minimax.
 - Remez’ algorithm is not sufficient.
- Use similar methods to find other approximants:
Future work

- We need a good algorithm to find constrained minimax.
 - Remez’ algorithm is not sufficient.
- Use similar methods to find other approximants:
 - rational fractions;
Future work

- We need a good algorithm to find constrained minimax.
 - Remez’ algorithm is not sufficient.
- Use similar methods to find other approximants:
 - rational fractions;
 - sums of cosines.