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Verhulst’s model

Population growth with linear predation{
dx
dt = x(a− bx)− cx ,
da
dt = db

dt = dc
dt = 0.

(1)

model’s description

• x(t) represents a species population at time t ;
• dx/dt is its change rate;
• (a− bx) is a per capita birth rate where

• a denotes the fertility rate;
• b denotes environment carrying capacity;

• c is a predation rate.
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Verhulst’s model

Population growth with linear predation{
dx
dt = x(a− bx)− cx ,
da
dt = db

dt = dc
dt = 0.

(1)

model’s characteristics (modeling standpoint)

• only the difference (a− c) between fertility and predation
rate is significant. These parameters should be lumped
together;

• models should be expressed in dimensionless form
• used units in the analysis are then unimportant;
• adjectives small and large have a definite relative meaning;
• the number of relevant parameters is reduces to

dimensionless groupings that determine the dynamics;

using dimensional analysis.
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Verhulst’s model

Population growth with linear predation{
dx
dt = x(a− bx)− cx ,
da
dt = db

dt = dc
dt = 0.

(1)

model’s characteristics (Lie point symmetries standpoint)

• one parameter group of translations

Tλ :

{
t → t
x → x

a → a + λ
b → b

c → c + λ

• 2-parameters group of scalings

Sλ1,λ2 :

{
t → t/λ2
x → λ1x

a → λ2a
b → λ2b/λ1

c → λ2c
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Verhulst’s model

Population growth with linear predation (canonical form)
dx
dt

= x(1− x).

x = 1 is a stable fixed point (1− 2x < 0),
x = 0 is unstable (1− 2x > 0).
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Verhulst’s model

Population growth with linear predation (canonical form)
dx
dt

= x(1− x).

x = 1 is a stable fixed point (1− 2x < 0),
x = 0 is unstable (1− 2x > 0).

Simplification: from original model to canonical one
Canonical model is obtained after the change of variables:

t = (a− c)t , x =
b

a− c
x .

Thus x = (a− c)/b is a stable fixed point of the original model
if the equalities 0 < b < 2(a− c) hold.
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These computations can be done in polynomial
time w.r.t. inputs size

Theorem (Hubert, Sedoglavic 2006)
Let Σ be a differential system bearing on n state variables and
depending on ` parameters that is coded by a straight-line
program of size L.

There exists a probabilistic algorithm that determines if a Lie
point symmetries group of Σ composed of dilatation and
translation exists; in that case, a rational set of invariant
coordinates is computed and Σ is rewrite in this set with a
reduced number of parameters.

The arithmetic complexity of this algorithm is bounded by

O
(
(n + `+ 1)

(
L + (n + `+ 1)(2n + `+ 1)

))
.
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Simple application of Lie’s theory

If one
• considers parameters θ as constant variables dθ/dt = 0

i.e. considers extended Lie symmetries;
• uses classical Lie’s theory i.e. Lie symmetries and their

invariants;
• knows what type of symmetries could be used,

one can
• unify (and extend?) available simplification methods that

seem (to me) based on rules of thumb;
• obtain simple effective and efficient algorithmic tools.
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Representation of point transformation

Vector field representation
dz1/dε = g1(z1, . . . , zn),

...
dzn/dε = gn(z1, . . . , zn).

Power series representation
z1(ε) = z1(0) + g1(z1, . . . , zn)ε+O(ε2),

...
zn(ε) = zn(0) + gn(z1, . . . , zn)ε+O(ε2).
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Representation of point transformation

Infinitesimal representation i.e. derivations acting on the
field K(z1, . . . , zn)

δ =
n∑

i=1

gi(z1, . . . , zn)
∂

∂zi
.

Closed form representation (if any) σ(z) =
∑

i∈N δ
i(z)/i!

σ


z1 → ζ1(z1, . . . , zn),

...
zn → ζn(z1, . . . , zn).
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Examples of point transformation

Vector field representation (translation)
dz1/dε = αz1 ,

...
dzn/dε = αzn ,

where the αzi s are numerical constant.

Power series representation
z1(ε) = z1(0) + αz1ε,

...
zn(ε) = zn(0) + αznε.
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Examples of point transformation

Infinitesimal representation i.e. derivations acting on the
field K(z1, . . . , zn)

ε

n∑
i=1

αzi

∂

∂zi
,

where the αzi s are numerical constant.

One-parameter group of K(z1, . . . , zn) automorphisms
z1 → z1 + αz1ε,

...
zn → zn + αznε.
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Examples of point transformation

Vector field representation (scaling)
dz1/dε = αz1z1,

...
dzn/dε = αznzn,

where the αzi s are numerical constant.

Power series representation
z1(ε) = z1(0) + αz1z1ε+O(ε2),

...
zn(ε) = zn(0) + αznznε+O(ε2).
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Examples of point transformation

Infinitesimal representation i.e. derivations acting on the
field K(z1, . . . , zn)

ε

n∑
i=1

αzi zi
∂

∂zi
,

where the αzi s are numerical constant.

One-parameter group of K(z1, . . . , zn) automorphisms
z1 → z1λ

αz1 ,
...

zn → znλ
αzn ,

λ = exp(ε).
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Determining system

D =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
, δ =

∑
ρ∈(t ,X ,P)

φρ
∂

∂ρ
, φρ ∈ K(t ,X ,P).

δ is a symmetry of D⇔ [D, δ] = δ ◦D−D ◦ δ = λD, λ ∈ K i.e.

−∂φt

∂t
−

n∑
i=1

fi
∂φt

∂xi
= λ,

∑
ρ∈(t ,X ,P)

φρ
∂fi
∂ρ
−
∂φxi

∂t
−

n∑
j=1

fj
∂φxi

∂xj
= λfi , ∀i ∈ {1, . . . ,n},

−
∂φpi

∂t
−

n∑
j=1

fj
∂φpi

∂xj
= 0, ∀i ∈ {1, . . . ,m}.

There is little hope to solve such a general PDE system.
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Determining system

D =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
, δ =

∑
ρ∈(t ,X ,P)

αρ
∂

∂ρ
, αρ ∈ K.

δ is a symmetry of D⇔ [D, δ] = δ ◦D−D ◦ δ = λD, λ ∈ K i.e.


∂f1
∂t

∂f1
∂x1

. . . ∂f1
∂xn

∂f1
∂p1

. . . ∂f1
∂pm

...
...

...
...

...
∂fn
∂t

∂fn
∂x1

. . . ∂fn
∂xn

∂fn
∂p1

. . . ∂fn
∂pm





αt
αx1

...
αxn

αp1
...

αpm


=



0
0
...
0
0
...
0


.

After specialisation of X and P in K, this system is solve by
numerical Gaussian elimination in K.
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Determining system

D =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
, δ =

∑
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Higher orders constraints

Generically, there is no symmetries; but previously we consider
systems composed of (n + `+ 1) unknowns and n relations!

One can consider a prolongated field K〈t ,X ,Θ〉 and induced
derivations (S is supposed to be a scaling):

D∞= D+
∑

j∈N?\{1}

n∑
i=1

Dj fi
∂

∂xi
(j) , S∞= S+

∑
j∈N?

∑
ρ∈(X ,Θ)

(αρ−jαt)ρ
(j)∂

∂ρ(j)

to obtain an infinite determining system [S∞,D∞] = λD∞.

Nevertheless, computations does not rely on power series
expansion but only on multiple specialisation.
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Some examples
Consider the system ȧ = ḃ = ċ = ḋ = 0,

ẋ = c(x − x3/3− y + d),
ẏ = (x + a− by)/c,

it’s infinitesimal symmetries form a vector field spanned by:

∂

∂y
+ b

∂

∂a
+

∂

∂d
,

and the associated one-parameters group of automorphisms:

y → y + λ,
a → a + bλ,
d → d + λ.
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Some examples
Consider the system ȧ = ḃ = ċ = ḋ = 0, u̇ 6= 0,

ẋ = u − (a + c)x + by ,
ẏ = ax − (b + d)y ,

it’s infinitesimal symmetries form a vector field spanned by:

y ∂
∂y + a∂

∂a − a∂
∂c − b ∂

∂b + b ∂
∂d ,

and the associated one-parameters group of automorphisms:

a → λa,
y → λy ,
b → b/λ,

c → c + (1− 1/λ)a,
d → d + (1− 1/λ)b.
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Some examples
Consider the system ȧ = ḃ = ḋ = ċ = ė = 0,

ẋ = (c − a− dx)x + by ,
ẏ = ax − (e + b)y ,

it’s infinitesimal symmetries form a vector field spanned by:

x ∂
∂x + y ∂

∂y − d ∂
∂d ,

y ∂
∂y + a∂

∂a − b ∂
∂b + a∂

∂c + b ∂
∂e ,

a∂
∂a + b ∂

∂b + c ∂
∂c + d ∂

∂d + e ∂
∂e − t ∂

∂t ,
and the associated 3-parameters group of automorphisms:

t → t/λ3,
x → λ1x ,
y → λ1λ2y ,
a → λ3a,

b → λ3b/λ2,
c → λ3c + λ3a(λ2 − 1),
d → λ3d/λ1,
e → λ3e + λ3b(1− 1/λ2).
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Symmetries of Verhulst’s model

T =
∂

∂a
+
∂

∂c
,

S1 = t
∂

∂t
− a

∂

∂a
− b

∂

∂b
− c

∂

∂c
,

S2 = x
∂

∂x
− b

∂

∂b
.

We consider the Lie algebra spanned by these generators. Its
commutation table is:

∂
∂t D T S1 S2

∂
∂t 0 0 0 ∂

∂t 0
D 0 0 0 −D 0
T 0 0 0 −T 0
S1 −∂

∂t D T 0 0
S2 0 0 0 0 0
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Symmetries of Verhulst’s model
This commutation table show that Der(K(t ,X ,Θ)/K) is
solvable:

{0} ⊂ L
(
∂

∂t
,D
)
⊂ L

(
∂

∂t
,D, T

)
⊂ L

(
∂
∂t ,D, T ,S2,S1

)
=

Der(K(t ,X ,Θ)/K).

Groups of automorphisms are associated to these algebras;
each group have an invariant field:

K(t , x ,a,b, c)←↩ K(t , x ,a,b, c)Tλ ←↩ (K(t , x ,a,b, c)Tλ)Sλ1,λ2 ←↩ {0}.

Using notations:

a = a− c, x = bx/a, t = (a− c) t ,

we have

K(t , x ,a,b, c)←↩ K(t , x , a,b)←↩ K(t, x)←↩ {0}.
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Geometric point of view

Theorem
Let M be a smooth n-dimensional manifold. Suppose G is a
local transformation group that acts regularly on M
with s-dimensional orbits. There exist a
smooth (m − s)-dimensional manifold M/G (the quotient of M
by G’s orbits) together with a projection π : M → M/G such
that:
• π is a smooth map between manifolds;
• points x and y lie in the same orbit of G in M if, and only if,

the relation π(x) = π(y) holds;
• if g denotes the Lie algebra of infinitesimal generators

of G’s action then the linear map dπ : TM|x → T (M/G)|π(x)

is onto, with kernel g|x = {s|x |s ∈ g}.
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Furthermore, local coordinates on the quotient manifold M/G
are provided by a complete set of functionally independant
invariants for the group action.

Mainly, there is just 2 main geometric remarks:
• by rewriting original system in an invariants coordinates

set, we reduce the number of parameters.
• these computations—invariants’ computation and system

rewriting—could be done in a single step.
All forthcoming is classical application of invariant theory.

We are going to recall some fact from invariant theory and
illustrate these assertions by an example (for general case—i.e.
use of Gröbner bases—see Hubert Kogan 2005).
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Example: scaling treatment
We focus our attention on parameters and on the graph of
automorphisms’ action:

∀y ∈ (Θ), σ(λ1,...,λm)(y) = y Πm
i=1λi

ay,i

By classical canonical homomorphism, these multiplicative
relations could be considered as a module represented by the
following matrix (the determinant of the submatrix (aθi ,j)

j=1,...,m
i=1,...m

is supposed different from 0):

λ1 . . . λm θ1 . . . θ` σ(θ1) . . . σ(θ`)

aθ1,1 . . . aθ1,m 1 0 . . . 0 1 . . . 0

aθ2,1 . . . aθ2,m 0 1
...

...
...

...
. . .

aθ`−1,1 . . . aθ`−1,m 1 0
. . .

aθ`,1 . . . aθ`,m 0 . . . 0 1 1


.
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A Gaussian elimination performed on this matrix and
terminated at m + 1 column position leads to the matrix :



1 0 . . . 0 γ1,θ1 . . . γ1,θ`

0
. . . . . .

...
...

...
...

. . . . . . 0
...

...
0 . . . 0 1 γm,θ1 . . . γm,θ`

0 . . . 0 βm+1,θ1 . . . βm+1,θ`
representation

...
...

...
... of

0 . . . 0 β`,θ1 . . . β`,θ`
orbits


.

This computation is sufficient to determine the following genera-
tors of the multiplicative set of rational invariants:

σ(λ1,...,λm)

∏̀
j=1

θj
βh,θj

 =
∏̀
j=1

θj
βh,θj , h = m + 1, . . . , `.
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A Gaussian elimination performed on this matrix and
terminated at m + 1 column position leads to the matrix :



1 0 . . . 0 γ1,θ1 . . . γ1,θ`
cross section

0
. . . . . .

...
...

... of orbits are
...

. . . . . . 0
...

... chosen there
0 . . . 0 1 γm,θ1 . . . γm,θ`

0 . . . 0 βm+1,θ1 . . . βm+1,θ`

...
...

...
...

0 . . . 0 β`,θ1 . . . β`,θ`


.

σ(λ1,...,λm)(θi) = θi

m∏
h=1

∏̀
j=1

θj
−γh,θj

aθi ,h

= θi

∏̀
j=1

θj
−

Pm
h=1 aθi ,h

γh,θj = 1.
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Example of application

Let us consider the following two-species oscillator:
dx/dt = a− k1x + k2x2y ,
dy/dt = b − k2x2y ,
da/dt = ḃ = k̇1 = k̇2 = 0.

One can remark that the following two parameters group of
scale symmetries:

t → λ t ,
x → λµ x ,
y → λµ y ,

a → µa,
b → µb,
k1 → k1/λ,

k2 → k2/λ
3µ2

leaves invariant solutions of this system.
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Using previous computational strategy, one can deduce that the
specialization:

t → t = k1 t ,

x → x = k1

(√
k1

3/k2

)
x ,

y → y = k1

(√
k1

3/k2

)
y ,

a → a =

(√
k1

3/k2

)
a,

b → b =

(√
k1

3/k2

)
b,

k1 → 1 = k1/k1,

k2 → 1 = k2/k3
1

(√
k1

3/k2

)2

leads to the system:{
dx/dt = a− x + x2y,

dy/dt = b− x2y.
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The choice of an invariant coordinates set is arbitrary.
Assuming that β := b/a > 0, κ := k2/(a2k1

3) > 0, we have

ξ0 = β + 1,
χ0 = β

(β+1)2κ
,

det = κ(β + 1)2,

trace = β−κ(β+1)3−1
β+1 .

There is a bifurcation for κ = (β − 1)/(β + 1)3. We perform
another change of variable κ = (β − 1)/(β + 1)3 + ε. If ε < 0,
the fixed point is attractive; otherwise, according to
Poincaré-Bendixon theorem, our system presents a limit cycle.

dξ/dτ = 1− ξ + β−1
(β+1)3 ξ

2χ+ εξ2χ,

dχ/dτ = β − β−1
(β+1)3 ξ

2χ− εξ2χ,

ε̇ = β̇ = 0,

ε = k2
a2k1

3 + a2 a−b
(a+b)3 .

One can use ε as a perturbing parameter for a
Poincaré-Lindstedt expansion.
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If one can deduce a parameters’ set for which the system
oscillate:

one can change its oscillation period using time dilatation:

t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
− k1

∂

∂k1
− 3k2

∂

∂k2
.

(work in progress with F. Lemaire and A. Ürgüplü)
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Determining system for Lie symmetries of
polynomial parametric systems

One can seek for Lie point symmetries of polynomial
parametric system F (X ,Θ) = 0 as follow:

X (ε) = X + εΦX (X ,Θ) +O(ε2),
Θ(ε) = Θ + εΦΘ(X ,Θ) +O(ε2),

F (X (ε),Θ(ε)) = 0+O(ε2).

In that case, infinitesimal generators is δ =
∑

ρ∈(t ,X ,Θ) φρ
∂
∂ρ , and

determining equations are:

δF =
∂F
∂X

ΦX (X ,Θ) +
∂F
∂Θ

ΦΘ(X ,Θ) = 0 mod F (X ,Θ),

and their computation could be done by polynomial elimination.
Rewriting of original system in an invariant coordinates set
could also be done by elimination (see Hubert Kogan 2005).
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Example

Let us apply the presented method to the following positive
dimensional system:

si = sin θi ,
ci = cos θi ,

`1c1 + `2c2 = x ,
`1s1 + `2s2 = y ,

c1
2 + s1

2 = 1,
c2

2 + s2
2 = 1.

c1
∂
∂x + s1

∂
∂y + ∂

∂`1
,

c2
∂
∂x + s2

∂
∂y + ∂

∂`2
,

s1
∂
∂c1
− c1

∂
∂s1

+ `1s1
∂
∂x − `1c1

∂
∂y ,

s2
∂
∂c2
− c2

∂
∂s2

+ `2s2
∂
∂x − `2c2

∂
∂y .

y → y + λ1s1 + λ2s2,
x → x + λ1c1 + λ2c2,
`1 → `1 + λ1,
`2 → `2 + λ2.

r1 = y − s1(`1 − 1),
r2 = x − c1(`1 − 1).


c1 + `2c2 = r2,
s1 + `2s2 = r1,

c1
2 + s1

2 = 1,
c2

2 + s2
2 = 1.
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Fixed point of ordinary differential system

Study of qualitative features of system:{
dx/dt = a− x + x2y,

dy/dt = b− x2y,

is a purely algebraic problem (elimination and eigenvalues com-
putation).
The one-parameter group associated to

x
∂

∂x
− y

∂

∂y
+ a

∂

∂a
+ b

∂

∂b

is a symmetries group of the algebraic problem but not of the
differential one.
The algebraic problem could be further simplified.
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Fixed point of ordinary differential system

In invariant coordinates, we consider the following system:

x = x/a,
y = ay,
b = b/a,

{
1− x + x2y = 0,

b − x2y = 0,

and compute the following relations:

x = b + 1, y = b
(b+1)2 ,

det = (b + 1)2, trace = −2+2b+3b2+b3

b+1 .
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Fixed point of ordinary differential system

Study of qualitative features of system:{
dx/dt = a− x + x2y,

dy/dt = b− x2y,

is a purely algebraic problem (elimination and eigenvalues com-
putation).
From previous specialization, we deduce that:

x = b + a, y = b
(b+a)2 ,

∀(a, b),det > 0, trace > 0⇔ b > ra (r ≈ 2.52).

Others specializations should also be used in order to return in
the original coordinates space.
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Axe effect

The following algebraic system

p2 + p1x1 = 0, x2(p2 + p1x1) + p2x2
2 + 1 = 0,

presents a trivial and a non trivial symmetries:

x1
∂

∂x1
−p1

∂

∂p1
, g := p2+p1x1+2p2x2,

g
p1

∂

∂x1
+x2

2∂

∂x2
−g

∂

∂p2
.

There is little hope to find an automorphism associated to this
last derivation.
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Axe effect

But, the more general algebraic system

p2 + p1x1 = 0, x2(p2 + p1x1) + p2x2
2 + p3 = 0,

presents only trivial symmetries:

x1
∂

∂x1
− p1

∂

∂p1
,

∂

∂p1
− x1

∂

∂p2
+ x2

2x1
∂

∂p3
,

∂

∂x2
− g

∂

∂p3
,

that leads to automorphisms.
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Action of point transformation on Lie algebra
Following Hydon 1998, suppose that the Lie algebra L spanned
by infinitesimal generators of system’s Lie point symmetries is
not trivial. Any point transformation σ—discrete or not—induces
an automorphism of the Lie algebra L and there exists a
constant dimL × dimL matrix (mj

i ) such that Si = mk
i Sk i.e. S1

...
SdimL

 =

 m1
1 · · · mdimL

1
...

...
m1

dimL · · · mdimL
dimL


 σ ◦ S1 ◦ σ−1

...
σ ◦ SdimL ◦ σ−1

.
This automorphism preserves structure constants cn

kl taken
from the commutation table and thus, the following relations
hold:

cn
klm

k
i ml

j = ck
ij m

n
k , 1 ≤ i < j ≤ dimL, 1 ≤ n ≤ dimL.
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Consider the single second order differential equation:

aẍ + bx + c = 0⇔
{

ẋ = y ,
ẏ = −bx+c

a .

Its infinitesimal generator of symmetries are S0 = ∂
∂t and:

S1 = ∂
∂x − b ∂

∂c ,

S2 = x ∂
∂x + y ∂

∂y + c ∂
∂c ,

S3 = a∂
∂a + b ∂

∂b + c ∂
∂c ,

S4 = t ∂
∂t + x ∂

∂x + a∂
∂a − b ∂

∂b .

D S0 S1 S2 S3 S4

D 0 0 0 0 0 D
S0 0 0 0 0 0 S0
S1 0 0 0 S1 0 S1

S2 0 0 −S1 0 0 0
S3 0 0 0 0 0 0
S4 −D −S0 −S1 0 0 0

aa
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A discrete symmetry ρ̄ = ψ(t , x , y ,a,b, c) for all ρ
in (t , x , y ,a,b, c), is such that the following relations holds:(

S1 (̄t) S1(x̄) S1(ȳ) S1(ā) S1(b̄) S1(c̄)
S2 (̄t) S2(x̄) S2(ȳ) S2(ā) S2(b̄) S2(c̄)
S3 (̄t) S3(x̄) S3(ȳ) S3(ā) S3(b̄) S3(c̄)
S4 (̄t) S4(x̄) S4(ȳ) S4(ā) S4(b̄) S4(c̄)

)
=

(
m1

1 m2
1 m3

1 m4
1

m1
2 m2

2 m3
2 m4

2
m1

3 m2
3 m3

3 m4
3

m1
4 m2

4 m3
4 m4

4

)(
0 1 0 0 0 −b̄
0 x̄ ȳ 0 0 c̄
0 0 0 ā b̄ c̄
t̄ x̄ 0 ā −b̄ 0

)
.

We do not try to compute all discrete point symmetries by solv-
ing these equations. We are just interested in a discrete point
transformation acting only on time. Thus, we suppose that:

t̄ = t + ψ(a,b, c), ∀ρ ∈ (X ,Θ), ρ̄ = ρ.
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In that case, our system is composed by an purely algebraic
system:

1− m1
1 − (m2

1 − m4
1)x, m2

1, m2
4, m2

3, m3
1 + m4

1, m3
1 − m4

1, (m1
1 − 1)b − (m2

1 + m3
1)c, (1− m2

2 − m4
2)x − m1

2,

m3
2 − m4

2, (1− m2
2 − m3

2)c + m1
2b, m1

3 + (m2
3 + m4

3)x, 1− m3
3 − m4

3, 1− m3
3 + m4

3, (1− m2
3 − m3

3)c + m1
3b,

(1− m2
4 − m4

4)x − m1
4, 1− m3

4 − m4
4,−1− m3

4 + m4
4, m1

4b − (m2
4 + m3

4)c, 1− m2
2,

m1
1(1− m2

4 − m4
4) + m4

1(m2
1 + m4

1), m1
1(1− m2

2 − m4
2) + m1

2(m2
1 + m4

1),

—which could be easily solved—and by the partial differential
system:

∂
∂cψ(a,b, c),

a ∂
∂a(a,b, c) + b ∂

∂bψ(a,b, c) + c ∂
∂cψ(a,b, c),

a ∂
∂aψ(a,b, c)− b ∂

∂bψ(a,b, c)− ψ(a,b, c),

whose solution is cste
√

a/b.
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Open questions

• What kind of symmetries occur in practice?
• Could we find dedicated kernel computations of

reasonable complexity?
• Are axe (and other) effects algorithmic?
• Could we extend this symmetry based approach to

systems of differential-difference equation?
• Connexion with Galois theory of parameterized differential

equation (Cassidy/Singer 2004)?
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