
Multiplication of

Power Series

Éric Schost, LIX, École polytechnique

Setting

• When talking about multiplication of power series, one has to
specify how to truncate them.

• The truncation pattern will be determined by the data of a
zero-dimensional monomial ideal.

• Example: M = 〈X3
1 , X2

1X2
2 , X3

2 〉 corresponds to series with
support in

T = {1, X1, X2
1 , X2, X1X2, X2

1X2, X2
2 , X1X

2
2}.

Here, the square of

1 + X1 + X2
1 + X2 + X1X2 + X2

1X2 + X2
2 + X1X

2
2

is

1 + 2X1 + 3X2
1 + 2X2 + 4X1X2 + 6X2

1X2 + 3X2
2 + 6X1X

2
2 .

Applications

Many forms of Hensel lifting involve computing modulo

〈X1, . . . , Xn〉d = 〈 all monomials of degree d 〉.
This is truncation in total degree.

Computations with algebraic numbers. Addition in
characteristic p uses products truncated modulo 〈Xp

1 , . . . , Xp
n 〉.

This is truncation in partial degree.

Polynomial system solving. Lecerf’s deflation algorithm for
systems with multiplicities requires products modulo the
“gradient” of the ideal

〈Xm1
1 , . . . , Xms

s , Xs+1, . . . , Xn 〉.

Pictorial representation

Some words on the complexity model

To measure the cost of multiplication algorithms, I will mention both
bilinear and total complexity.

• Bilinear complexity only counts the “algebra operations”, that is,
“essential multiplications”.

If is often easier to estimate.

• Total complexity takes into account some linear operations as
well.

Example: FFT in degree n.

evaluation at roots of 1 � pairwise multiplications � interpolation

Bilinear cost is n, total cost is O(n log(n)).

Formally: computational model

Let D be an algebra with basis b, over a field k.

A bilinear algorithm is the data of

• 2s linear forms f1, . . . , fs and h1, . . . , hs over D,

• s elements w1, . . . , ws in D, such that the equality

AB =
s∑

i=1

fi(A)hi(B)wi

holds for all A, B in D.

Complexity measures:

• Bilinear complexity (rank) = s.

• Total complexity also counts the cost of computing fi(A), hi(B),
and performing the recombination, in the basis b.

Overview

Let M be a zero-dimensional monomial ideal in k[X1, . . . , Xn].

• The bilinear complexity of the product modulo M is

Olog(regM degM).

regM : regularity of M , degM : degree of M .

• Giving total complexity estimates requires to solve multivariate
evaluation / interpolation problems.

• Particular case: truncation in partial degree. The total
complexity is in

O
(
(degM)1+ε

)
for all ε.

Previous work

Few variables

1 variable.

• The bilinear complexity of the product modulo Xd
1 (by FFT-like

techniques) is the same as that of polynomials (Winograd,
Fiduccia-Zalcstein), 2d − 1.

• Improvements for some slower algorithms like Karatsuba or
Toom-Cook (Mulders, Hanrot-Zimmermann).

2 variables.

• Truncation in total degree d (Schönhage, Bläser)

1.25 d2 ≤ CBilinear ≤ 1.5 d2 degM � 0.5 d2

• Truncation in partial degree d (Schönhage, Bläser)

2.33 d2 ≤ CBilinear ≤ 3 d2 degM � d2

Several variables

Let T be the set of exponents in the monomial basis of k[X1, . . . , Xn]/M ;
then |T| = degM .

Naive product: the total complexity is
∑
t∈T

(t1 + 1) · · · (tn + 1).

Special cases

Truncation in total degree � deg2
M

n! .

Truncation in partial degree � deg2
M

2n .

Using fast multivariate polynomial multiplication: for truncation in
partial degree, Olog (2n degM) .

Several variables, special case

Total degree. In total degree d + 1, with n variables, the total
complexity is

Olog (degM) ,

where degM =
(
d+n

n

)
and char k = 0 (Lecerf-S.).

Previous result by Griewank, bilinear complexity only.

Generalization by van der Hoeven to weighted total degree
truncation.

Improvements in the log factors by van der Hoeven, under some
conditions on n, d, using his Truncated Fourier Transform.

Evaluation and

interpolation

in several variables

Monomial ideals and sets of points

Setup. k is a field (infinite or large enough).

M ⊂ k[X1, . . . , Xn] is the monomial ideal generated by some
terms g1, . . . , gR , where gi does not divide gj , i �= j, and

gi = X
δi
1

1 · · ·Xδi
n

n .

The index set. T ⊂ N
n is the set of exponents of the monomial

basis of k[X1, . . . , Xn]/M .

Example: M = 〈X7
1 , X6

1X2
2 , X2

1X4
2 , X5

2 〉

Some special sets of points

Values in k. Let di be minimal such that Xdi

i is in M .

For i ≤ n and j < di, let ai,j ∈ k such that ai,j �= ai,j′ for j �= j′,
and

A1 = [a1,0, . . . , a1,d1−1], . . . , An = [an,0, . . . , an,dn−1].

The evaluation set. Define AT ⊂ A1 × · · · × An ⊂ kn by

AT = {(a1,c1 , . . . , an,cn) | (c1, . . . , cn) ∈ T} .

Basic example: Take ai,j = j. Then

AT = T.

An easy Gröbner basis

For r ≤ R, recall that gr = X
δr
1

1 · · ·Xδr
n

n and define

Gr =
n∏

i=1

δr
i −1∏
j=0

(Xi − ai,j)

Example. Take ai,j = j for all i, j and M = 〈X10
1 , X10

2 〉.

g1 = X10
1 �→ G1 = (X1 − 0)(X1 − 1) · · · (X1 − 9).

g2 = X10
2 �→ G2 = (X2 − 0)(X2 − 1) · · · (X2 − 9).

Prop. For any monomial order that refines degree,

• gr is the leading term of Gr;

• 〈G1, . . . , GR〉 is a Gröbner basis of I(AT).

Macaulay, Hartshorne, Briançon-Galligo, Mora, Sauer . . .

An evaluation / interpolation problem

Corollary. Let

Span(T) = Span{Xt1
1 · · ·Xtn

n | (t1, . . . , tn) ∈ T}.
It is the set of polynomials reduced with respect to M . Then
map Eval

P ∈ Span(T) �→ [P (a) | a ∈ AT]

is invertible. Let Interp be its inverse.

Question: How fast can we compute Eval and Interp?

In general, I don’t know =⇒ I write CEval and CInterp for their
complexity.

For some special cases, it becomes easier.

Classical example: M = 〈Xd1
1 , . . . , Xdn

n 〉
Amounts to evaluation / interpolation on a rectangular grid.

First evaluate Xn, then Xn−1, . . .

• Choose primitive roots of 1 if available;

• else, choose points at a geometric progression;

• else, choose arbitrary points;

� an algorithm in Olog(degM) = Olog(d1 · · · dn).

Less classical examples

E.g., evaluation on the left-hand example, we would

• Split the “right-hand” arm from the rest of the body.

• Do some analogue of classical multipoint evaluation.

• Proceed recursively.

A general algorithm for these questions remains to be written.

Main results

Review of the setup

Let k be infinite or “large enough”, and n ≥ 1.

• Let g1, . . . , gR be terms in k[X1, . . . , Xn], such that gi does not
divide gj , i �= j.

• Let M = 〈g1, . . . , gR〉.

• Let T be the exponents of the terms not in M .

• Let degM = |T| = degree of M .

• Let regM = 1 + max{|t| for t ∈ T} = regularity of M .

• Let AT be the set of points associated to T.

Complexity notation

• MBilinear(d) and M(d) are the bilinear and total cost of univariate
polynomial multiplication in degree d.

Using FFT,

MBilinear(d) = O(d log(d)), M(d) = O(d log(d) log log(d))

Schönhage-Strassen, Cantor-Kaltofen.

Main results: general case

Theorem. The bilinear complexity of the multiplication in Q is
upper bounded by

MBilinear(regM) degM .

Theorem. The total complexity is in

O
(
(CEval + CInterp)regM + M(regM) degM

)
.

What is it worth? An optimal result would be in O(degM).

Here, the best we could hope for would be in O(regM degM).

This would require sharp results for CEval and CInterp.

Main results: partial degree truncation

Theorem. Let d1, . . . , dn be in N>0. The total complexity of the
product modulo M = 〈Xd1

1 , . . . , Xdn
n 〉 is in

Olog ((d1 + · · · + dn) d1 · · · dn) .

Corollary. For any ε > 0, the total complexity of the product
modulo M = 〈Xd1

1 , . . . , Xdn
n 〉 is in

O
(
(d1 · · · dn)1+ε

)
.

Idea of proof. Use Kronecker’s substitution for large di’s and the
previous theorem for small ones.

Proof

Approximate algorithms

Let D be a k-algebra and ε a new indeterminate.

An approximate (bilinear) algorithm for the product in D is

• 2s linear forms f1, . . . , fs and h1, . . . , hs with coefficients in k(ε)

• s elements w1, . . . , ws in D ⊗ k(ε) (i.e. in D with coefficients in
k(ε)), such that one has for all A, B in D

AB =
s∑

i=1

fi(A)hi(B)wi mod ε.

Origins: matrix multiplication.

• Bini et al.: approximate (floating-point) product.

• Bini: relation to exact computation.

Example: multiplication modulo X2
1

Let A = a0 + a1X1 and B = b0 + b1X1. Then

AB mod X2
1 = (AB mod (X2

1 − ε2))︸ ︷︷ ︸
C

mod ε

1. Evaluation

A(±ε) = a0 ± a1ε, B(±ε) = b0 ± b1ε

2. Pairwise products

C(ε) = A(ε)B(ε), C(−ε) = A(−ε)B(−ε)

3. Interpolation

C = C(ε)
X1 + ε

2ε
+C(−ε)

−X1 + ε

2ε
= a0b0+(a0b1+a1b0)X1+ε2a1b1.

Example: multiplication modulo Xd
1

The example generalizes to k[X1]/Xd
1 using the deformation

k[X1]/(Xd
1 − εd) ≡

d−1∏
i=0

k[X1]/(X1 − ωiε),

where ω is a primitive dth root of 1.

We get the algorithm:

1. Evaluation at ε, ωε, . . . , ωd−1ε.

2. Pairwise products.

3. Interpolation at ε, ωε, . . . , ωd−1ε.

Complexity: d × M(d).

A deformation for the general case

For r ≤ R, recall that:

• gr = X
δr
1

1 · · ·Xδr
n

n

• Gr =
∏n

i=1

∏δr
i −1

j=0 (Xi − ai,j)

• 〈G1, . . . , GR〉 is the ideal of the set of point AT.

The connexion between the two situations is done by introducing

Gε
r =

n∏
i=1

δr
i −1∏
j=0

(Xi − εai,j).

=⇒ 〈Gε
1, . . . , G

ε
R〉 is the ideal of the set of point εAT.

Algorithm

Using

AB mod 〈g1, . . . , gR〉 = (AB mod 〈Gε
1, . . . , G

ε
R〉) mod ε

and

k[X1, . . . , Xn]/〈Gε
1, . . . , G

ε
R〉 ≡

∏
a∈AT

k[X1, . . . , Xn]/(X1−εa1, . . . , Xn−εan)

the product modulo 〈g1, . . . , gR〉 is obtained by:

1. Evaluation at [(εa1, . . . , εan) | a ∈ AT].

2. Pairwise products.

3. Interpolation at [(εa1, . . . , εan) | a ∈ AT].

4. Specializing ε at 0.

Complexity estimates

Color code: red = Total complexity, blue = Bilinear complexity

1. Evaluation: polynomial in k[ε] of degree ≤ regM on AT.

Eval(AT)regM .

2. Pairwise products: degM products in k[ε] in degree ≤ regM .

MBilinear(regM) degM , M(regM) degM .

3. Interpolation: polynomial in k[ε] of degree ≤ 2regM on AT.

Interp(AT)regM .

4. Specialization: free.

Open questions

• Are there algorithms for evaluation / interpolation in O(degM)
in the general case?

• In the following special case?

• Are evaluation and interpolation essentially equivalent as in the
univariate case?

• Is it possible to explode the fat point into “less fat points”?

Application

Sum of two algebraic numbers

Example: determine that
√

2 +
√

3 cancels X4 − 10X2 + 1.

General case: let

F =
∏

i

(X − fi), G =
∏
j

(X − gj)

over a field k. Compute the polynomial

R =
∏
i,j

(X − (fi + gj)).

R is the characteristic polynomial of X + Y in k[X, Y]/(F (X), G(Y))
so it has coefficients in k.

Its degree is deg R = deg(F) deg(G).

Newton sums in characteristic 0

Consider the Newton sums of F , G and R

Ns(F) =
∑

i

fs
i , Ns(G) =

∑
j

gs
j , Ns(R) =

∑
i,j

(fi + gj)s.

Define the exponential generating series

N(F) =
∑
s≥0

Ns(F)
s!

Xs, N(G) =
∑
s≥0

Ns(G)
s!

Xs, N(R) =
∑
s≥0

Ns(R)
s!

Xs.

Then: N(R) = N(F)N(G).

Algorithm (Dvornicich, Traverso).

1. Compute the Newton sums of F and G. Olog(deg R)

2. Perform the univariate power series product. Olog(deg R)

3. Recover R from its Newton sums. Olog(deg R)

Newton sums in small characteristic

Over Z/pZ, with p < deg R, steps 2. and 3. are ill-defined, because
of division by 0.

Workarounds.

2’. Multiplication of multivariate power series, modulo

M = 〈Xp
1 , . . . , Xp

n 〉,

with degM = deg R.

3’. Use more Newton sums (Schönhage, Kaltofen-Pan, Pan).

Th. In small characteristic (p fixed), the complexity of computing R

is in Olog(deg R) bit operations.

Tests in characteristic 3

When p = 3, in degree D, one computes series products modulo

〈X3
1 , . . . , X3

n〉,

where n = �log3(D)�.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500 550

Multiplication
Total

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 3 4 5 6 7 8 9 10 11

This paper
Naive

All computations made using Shoup’s NTL C++ library.

