## Computing Multisections of a Given Series

 Solution of a Linear Differential Operator
## Frédéric Chyzak

RINRIA - Team "Algorithms"

Joint work with M. Barkatou and M. Loday-Richaud
frederic.chyzak@inria.fr

## Statement of the Problem

The $r$-multisections of a power series $\hat{f}=\sum_{m \geq 0} a_{m} x^{m}$ are the

$$
\hat{f}^{j}=a_{0 r+j} x^{0 r+j}+a_{1 r+j} x^{1 r+j}+a_{2 r+j} x^{2 r+j}+\cdots=\sum_{m \geq 0} a_{r m+j} x^{r m+j}
$$

Problem: Given a linear differential operator $L=L(x, \partial)$, compute a common annihilator of the $\hat{f}^{j}$ for any $0 \leq j<r$ and any solution $\hat{f}$ of $L$.

Dual Problem: Given a linear recurrence operator $L^{*}=L^{*}(m, \tau)$, compute a common annihilator of the $a^{j}=\left(a_{r m+j}\right)_{m \geq 0}$ for any $0 \leq j<r$ and any solution $\left(a_{m}\right)_{m \geq 0}$ of $L^{*}$.

## Multisections Computation Also Known as Decimation

Decimation of linear recurrent sequences, i.e., solutions of recurrences with constant coefficients, related to a generalization of the Graeffe polynomial:

- automatic series and number theory
- cryptography
- Fibonacci Quarterly
-"Fast computation of special resultants" (BoFlSaSc06)


## Summability of Divergent Series

For $k>0$, the series $\hat{f} \in \mathbb{C}[[x]]$ is $k$-summable in the direction $d \in \mathbb{R}$ if there exist a sector $S(d, \alpha, \rho)$ of aperture $\alpha>\pi / k$ and a function $f$ admitting $\hat{f}$ as asymptotic expansion of order $k$, that is:

$$
\begin{aligned}
& \forall \bar{T} \subset S, \exists C, K>0, \forall n \in \mathbb{N}, \forall x \in \bar{T} \\
& \qquad\left|f(x)-\sum_{j=0}^{n-1} a_{j} x^{j}\right| \leq C K^{n}|x|^{n} \Gamma(1+n / k) .
\end{aligned}
$$

The function $f$ is then unique and called "sum of $f$."

## Summation of $k$-Summable Series

Borel transform: $\quad \hat{B}_{1}\left(x^{n+1}\right)=t^{n} / n!, \quad \hat{B}_{k}\left(x^{n}\right)=t^{n-k} / \Gamma(n / k)$.
Laplace transform:

$$
\begin{aligned}
& \mathcal{L}_{k}(\phi)(x)=\int_{d} \phi(t) \exp \left(-t^{k} / x^{k}\right) d\left(t^{k}\right) . \\
& \mathcal{L}_{k} \hat{B}_{k}\left(x^{n}\right)=x \mapsto x^{n}
\end{aligned}
$$

$k$-summable DV series $\hat{f} \xrightarrow{\hat{B}_{k}} \mathrm{CV}$ series


$$
\text { sum function } f \quad \stackrel{\mathcal{L}_{k}}{\longleftarrow} \text { function }
$$

$\hat{f}$ is $k$-summable $\Longrightarrow$ the $k$-multisections $\hat{f}^{j}$ are 1 -summable. Summation of 1-summable series is numerically more stable.

## Summing Euler's Divergent Series

$$
\begin{gathered}
\hat{g}=\sum_{n \geq 0}(-1)^{n} n!x^{n+1} \\
\hat{B}_{1} \hat{g}=\sum_{n \geq 0}(-1)^{n} t^{n} \text { converges to the function } t \mapsto \frac{1}{1+t} \\
g=\mathcal{L}_{1} \hat{B}_{1} \hat{g}=\left(x \mapsto \int_{0}^{\infty} \frac{\exp (-t / x)}{1+t} d t\right)
\end{gathered}
$$

Note: $\left(x^{2} \partial+1\right) \hat{g}=x$, so that $(x \partial-1)\left(x^{2} \partial+1\right) \hat{g}=0$.

## Multisummability

For $k_{1}>\cdots>k_{r}>0$, the series $\hat{f} \in \mathbb{C}[[x]]$ is $\left(k_{1}, \ldots, k_{r}\right)$-summable in the direction $d \in \mathbb{R}$ if $\hat{f}=\hat{f}_{1}+\cdots+\hat{f}_{r}$ where $\hat{f}_{i}$ is $k_{i}$-summable. The sum of $\hat{f}$ is then given as $f=f_{1}+\cdots+f_{r}$ where $f_{i}$ is the sum of $\hat{f}_{i}$. (Écalle, Malgrange, Ramis)

Theoretical approaches to multisummation: by iterated Laplace and Borel transforms (Balser); by accélératrices (Écalle).

Numerically, multisections to reduce to 1-summable series is a good, stable approach (Thomann, Jung, Naegelé).

$$
\hat{f}=\hat{g}(x)+\hat{g}\left(x^{2}\right) \quad \rightarrow \quad \text { is }(2,1) \text {-summable (Ramis-Sibuya) } .
$$

## Formal Mellin Transform

$\left(\sum_{m \in \mathbb{Z}} a_{m} x^{m}\right)^{\prime}=\sum_{m \in \mathbb{Z}}(m+1) a_{m+1} x^{m}, \quad x \sum_{m \in \mathbb{Z}} a_{m} x^{m}=\sum_{m \in \mathbb{Z}} a_{m-1} x^{m}$.
$\partial=$ differential operator $d / d x$ :

$$
\begin{aligned}
\partial x-x \partial & =1 \\
\delta x-x \delta & =x
\end{aligned}
$$

$\delta=$ Eulerian operator $x d / d x$ :
Algebra isomorphism $\mathbb{C}\left\langle x, x^{-1}, \partial\right\rangle \simeq \mathbb{C}\langle m, \sigma, \tau\rangle$.
$\sigma=$ forward shift operator with respect to $m$ : $\quad \sigma m=(m+1) \sigma$
$\tau=$ backward shift operator with respect to $m$ : $\quad \tau m=(m-1) \tau$

For Euler's series: $(x \partial-1)\left(x^{2} \partial+1\right) \leftrightarrow(m-1)((m-1) \tau+1)$.

## Saturation Under the Galois Group of $\omega^{r}=1$

$$
\begin{gathered}
r \hat{f}^{j}=\hat{f}(x)+\omega^{-j} \hat{f}\left(\omega^{j} x\right)+\cdots+\omega^{-(r-1) j} \hat{f}\left(\omega^{j(r-1)} x\right) \\
\mathbb{C} \hat{f}^{0} \oplus \cdots \oplus \mathbb{C} \hat{f}^{r-1}=\mathbb{C} \hat{f}(x) \oplus \mathbb{C} \hat{f}(\omega x) \oplus \cdots \oplus \mathbb{C} \hat{f}\left(\omega^{r-1} x\right) \\
\operatorname{ann}\left(\hat{f}^{0}, \ldots, \hat{f}^{r-1}\right)=\operatorname{lclm}\left(\operatorname{ann} \hat{f}(x), \operatorname{ann} \hat{f}(\omega x), \ldots, \text { ann } \hat{f}\left(\omega^{r-1} x\right)\right) \\
x \rightarrow \omega x, \partial \rightarrow \omega^{-1} \partial, \delta \rightarrow \delta, m \rightarrow m, \tau \rightarrow \omega \tau, \sigma \rightarrow \omega^{-1} \sigma
\end{gathered}
$$

Computations in $\mathbb{Q}(\omega, x)\langle\partial\rangle$, resp. $\mathbb{Q}(\omega, m)\langle\sigma\rangle$.

## Variant Elimination

Replace $\omega \in \mathbb{C}$ with an indeterminate $w$ :

$$
x \rightarrow w x, \partial \rightarrow w^{-1} \partial, \tau \rightarrow w \tau, \sigma \rightarrow w^{-1} \sigma .
$$

$L \in \mathbb{Q}\langle x, \partial\rangle \quad \rightarrow \quad$ Bézout relation in $\operatorname{Frac}(\mathbb{Q}\langle x, \partial\rangle)[w]:$

$$
\begin{aligned}
S(x, \partial, w) L\left(w x, w^{-1} \partial\right)+T(x, \partial, w)\left(w^{r}-1\right) & =u(x) M(x, \partial) \\
& \text { for } S, L, M \in \mathbb{Q}\langle x, \partial\rangle
\end{aligned}
$$

$L \in \mathbb{Q}\langle m, \tau\rangle \quad \rightarrow \quad$ Bézout relation in $\operatorname{Frac}(\mathbb{Q}\langle m, \tau\rangle)[w]:$

$$
\begin{aligned}
S(m, \tau, w) L(m, w \tau)+T(m, \tau, w)\left(w^{r}-1\right) & =u(m) M(m, \tau) \\
& \text { for } S, L, M \in \mathbb{Q}\langle m, \tau\rangle
\end{aligned}
$$

## Computation by Hadamard Product

Bruno Salvy's first instinct: $\hat{f}^{j}=\hat{f} \odot \frac{x^{j}}{1-x^{r}}$, where

$$
\sum_{m \geq 0} a_{m} x^{m} \odot \sum_{m \geq 0} b_{m} x^{m}=\sum_{m \geq 0} a_{m} b_{m} x^{m}
$$

Hadamard product algorithm (e.g., in gfun) specializes to:
W.l.o.g., $L \in \mathbb{Q}(m)\langle\tau\rangle$ is monic of some order, $o$, so for any $k \geq 0$,

$$
\tau^{k r} \in \bigoplus_{\ell=0}^{o-1} \mathbb{Q}(m) \tau^{\ell}
$$

$\mathbb{Q}(m)$-dependency between the $\tau^{k r}$ by Gaussian elimination.

## Direct Computation of Differential Invariants

Really a dual of the Hadamard product approach.

$$
\begin{gathered}
\mathbb{Q}(x)=\bigoplus_{i=0}^{r-1} \mathbb{Q}(t) x^{i} \quad \text { for } t=x^{r}, \text { so } \\
L(x, \delta)=L_{0}(t, \delta)+x L_{1}(t, \delta)+\cdots+x^{r-1} L_{r-1}(t, \delta)
\end{gathered}
$$

W.l.o.g., $L \in \mathbb{Q}(x)\langle\delta\rangle$ is monic of some order, $o$, so for any $k \geq 0$,

$$
\delta^{k} \in \bigoplus_{i=0}^{r-1} \bigoplus_{j=0}^{o-1} \mathbb{Q}(t) x^{i} \delta^{j}
$$

$\mathbb{Q}(t)$-dependency between the $\delta^{k}$ by Gaussian elimination.

## Companion Systems and Saturation Again

$$
\begin{gathered}
L \hat{f}=0 \quad \leftrightarrow \quad x^{r+1} Y^{\prime}=A(x) Y, \quad Y=\left(\hat{f}, \ldots, \hat{f}^{(r-1)}\right)^{T} \\
(C Y)^{\prime}=\left(C^{\prime}+x^{-(r+1)} C A\right) Y, \quad C=\left(c_{0}, \ldots, c_{r-1}\right)
\end{gathered}
$$

$\rightarrow$ Cyclic-vector method on $C=(1,0, \ldots, 0)$ to recover $L$.

$$
x^{r+1} \tilde{Y}^{\prime}=\left(\bigoplus_{j=0}^{r-1} A\left(\omega^{j} x\right)\right) \tilde{Y}, \quad \tilde{Y}=\left(Y(x), Y(\omega x), \ldots, Y\left(\omega^{r-1} x\right)\right)^{T}
$$

$\rightarrow$ Cyclic-vector method on $\tilde{C}=(C, \ldots, C)$ to compute ann $\hat{f}^{0}$.
Recurrence analogue of the form $\tau \tilde{Y}=\left(\bigoplus_{j=0}^{r-1} \omega^{j} A(m)\right) \tilde{Y}$.

## Algorithm Inspired by Turrittin's Rank Reduction

In terms of multisections of $Y$ and $A, x^{r+1} Y^{\prime}=A Y$ becomes

$$
x^{r+1}\left(Y^{0}+\cdots+Y^{r-1}\right)^{\prime}=\left(A^{0}+\cdots+A^{r-1}\right)\left(Y^{0}+\cdots+Y^{r-1}\right)
$$

Thus, we consider $x^{r+1} \tilde{Y}^{\prime}=\tilde{A} \tilde{Y}$, for (Loday-Richaud 2001)

$$
\tilde{A}=\left(A^{i-j}\right)_{i, j=0}^{r}=\left(\begin{array}{cccc}
A^{0} & A^{r-1} & \ldots & A^{1} \\
A^{1} & A^{0} & \ldots & A^{2} \\
\vdots & \vdots & \ddots & \vdots \\
A^{r-1} & A^{r-2} & \ldots & A^{0}
\end{array}\right) \quad \text { and } \quad \tilde{Y}=\left(\begin{array}{c}
Y^{0} \\
Y^{1} \\
\vdots \\
Y^{r-1}
\end{array}\right)
$$

Cyclic-vector method with $(1,0, \ldots, 0)$.
Recurrence analogue: $\tau^{r} \tilde{Y}=A(m-r+1) \ldots A(m+1) A(m) \tilde{Y}$.

## Comparing Outputs of Dual Methods

$$
\begin{gathered}
L \hat{f}=0 \quad \leftrightarrow \quad L^{*} a=0 \\
\mathbb{C}\left\langle x, x^{-1}, \partial\right\rangle \simeq \mathbb{C}\langle m, \sigma, \tau\rangle \text { but calculations in } \mathbb{Q}(x)\langle\partial\rangle \text { and } \mathbb{Q}(m)\langle\tau\rangle . \\
\Lambda_{1}(x, \partial)=\operatorname{ann}\left(\hat{f}^{0}, \ldots, \hat{f}^{r-1}\right), \quad \Lambda_{2}(m, \tau)=\operatorname{ann}\left(a^{0}, \ldots, a^{r-1}\right) . \\
\Lambda_{1} \in \mathbb{Q}\left\langle x^{r}, \delta\right\rangle, \quad \Lambda_{2} \in \mathbb{Q}\left\langle m, \tau^{r}\right\rangle . \\
Q\left(m, \tau^{r}\right) \Lambda_{1}(x, \partial)^{*}=u\left(\tau^{r}\right) v(m) \Lambda_{2}(m, \tau) .
\end{gathered}
$$

## Timings

Ramis-Sibuya example with Maple on an Alpha EV6.7 at 667 MHz : ( $\dagger$ means $\geq 1400 \mathrm{~s} ; \ddagger$ means $\geq 128 \mathrm{MB}$.)

| $r$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 0.9 | 51 | 151 | $\dagger$ |  |  |  |  |  |
| A1* | 1.5 | $\ddagger$ |  |  |  |  |  |  |  |
| A 2 | 2.4 | $\dagger$ |  |  |  |  |  |  |  |
| A2* | 2.0 | $\ddagger$ |  |  |  |  |  |  |  |
| A3 | . 6 | 2.3 | 3.0 | 9.0 | 8.9 | 28.7 | 21.5 | 196.9 | 50.0 |
| A3* | . 5 | 2.4 | 2.4 | 12.5 | 10.2 | 43.0 | 30.2 | 123.0 | 71.0 |
| A 4 | . 4 | 45.2 | 26.0 | $\ddagger$ |  |  |  |  |  |
| A 4 * | . 8 | 121.2 | 1050.0 | $\dagger$ |  |  |  |  |  |
| A5 (1) | . 5 | 1.9 | 2.8 | 9.6 | 9.8 | 41.0 | 28.0 | 231.0 | 71.3 |
| A5* (1) | . 3 | 1.6 | 1.5 | 6.4 | 4.7 | 19.1 | 11.6 | 47.1 | 25.0 |
| A5 (2) | . 5 | 4.0 | 6.6 | 89.0 | 56.0 | $\dagger$ |  |  |  |
| A5* ${ }^{*}$ ) | . 9 | 4.6 | 6.0 | 30.1 | 25.3 | 150 | 88 | 642.0 | 341.3 |

$\rightarrow$ Use systems and avoid introducing algebraic numbers.
$\rightarrow$ Complexity analysis missing. Resultants? Padé-Hermite?

