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Statement of the Problem

The r-multisections of a power series f̂ =
∑

m≥0 amxm are the

f̂ j = a0r+jx
0r+j + a1r+jx

1r+j + a2r+jx
2r+j + · · · =

∑
m≥0

arm+jx
rm+j .

Problem: Given a linear differential operator L = L(x, ∂), compute a
common annihilator of the f̂ j for any 0 ≤ j < r and any solution f̂

of L.

Dual Problem: Given a linear recurrence operator L∗ = L∗(m, τ),
compute a common annihilator of the aj = (arm+j)m≥0 for any
0 ≤ j < r and any solution (am)m≥0 of L∗.



Multisections Computation Also Known as

Decimation

Decimation of linear recurrent sequences, i.e., solutions of recurrences
with constant coefficients, related to a generalization of the Graeffe
polynomial:

– automatic series and number theory

– cryptography

– Fibonacci Quarterly

– “Fast computation of special resultants” (BoFlSaSc06)



Summability of Divergent Series

For k > 0, the series f̂ ∈ C[[x]] is k-summable in the direction d ∈ R
if there exist a sector S(d, α, ρ) of aperture α > π/k and a function f

admitting f̂ as asymptotic expansion of order k, that is:

∀T̄ ⊂ S, ∃C,K > 0, ∀n ∈ N, ∀x ∈ T̄ ,∣∣∣∣f(x)−
n−1∑
j=0

ajx
j

∣∣∣∣ ≤ CKn|x|nΓ(1 + n/k).

The function f is then unique and called “sum of f .” (Ramis)



Summation of k-Summable Series

Borel transform: B̂1(xn+1) = tn/n!, B̂k(xn) = tn−k/Γ(n/k).

Laplace transform: Lk(φ)(x) =
∫

d
φ(t) exp(−tk/xk) d(tk).

LkB̂k(xn) = x 7→ xn

k-summable DV series f̂
B̂k−−−−→ CV series

asymptotic

xexpansion

ysum

sum function f
Lk←−−−− function

f̂ is k-summable =⇒ the k-multisections f̂ j are 1-summable.

Summation of 1-summable series is numerically more stable.



Summing Euler’s Divergent Series

ĝ =
∑
n≥0

(−1)nn!xn+1

B̂1ĝ =
∑
n≥0

(−1)ntn converges to the function t 7→ 1
1 + t

g = L1B̂1ĝ =
(

x 7→
∫ ∞

0

exp(−t/x)
1 + t

dt

)

Note: (x2∂ + 1)ĝ = x, so that (x∂ − 1)(x2∂ + 1)ĝ = 0.



Multisummability

For k1 > · · · > kr > 0, the series f̂ ∈ C[[x]] is (k1, . . . , kr)-summable
in the direction d ∈ R if f̂ = f̂1 + · · ·+ f̂r where f̂i is ki-summable.
The sum of f̂ is then given as f = f1 + · · ·+ fr where fi is the sum
of f̂i. (Écalle, Malgrange, Ramis)

Theoretical approaches to multisummation: by iterated Laplace and
Borel transforms (Balser); by accélératrices (Écalle).

Numerically, multisections to reduce to 1-summable series is a good,
stable approach (Thomann, Jung, Naegelé).

f̂ = ĝ(x) + ĝ(x2) → is (2, 1)-summable (Ramis–Sibuya).



Formal Mellin Transform

( ∑
m∈Z

amxm

)′
=

∑
m∈Z

(m + 1)am+1x
m, x

∑
m∈Z

amxm =
∑
m∈Z

am−1x
m.

∂ = differential operator d/dx: ∂x− x∂ = 1

δ = Eulerian operator x d/dx: δx− xδ = x

Algebra isomorphism C〈x, x−1, ∂〉 ' C〈m,σ, τ〉.

σ = forward shift operator with respect to m: σm = (m + 1)σ

τ = backward shift operator with respect to m: τm = (m− 1)τ

For Euler’s series: (x∂ − 1)(x2∂ + 1)↔ (m− 1)
(
(m− 1)τ + 1

)
.



Saturation Under the Galois Group of ωr = 1

rf̂ j = f̂(x) + ω−j f̂(ωjx) + · · ·+ ω−(r−1)j f̂(ωj(r−1)x)

Cf̂0 ⊕ · · · ⊕ Cf̂r−1 = Cf̂(x)⊕ Cf̂(ωx)⊕ · · · ⊕ Cf̂(ωr−1x)

ann(f̂0, . . . , f̂r−1) = lclm
(
ann f̂(x), ann f̂(ωx), . . . , ann f̂(ωr−1x)

)

x→ ωx, ∂ → ω−1∂, δ → δ, m→ m, τ → ωτ, σ → ω−1σ

Computations in Q(ω, x)〈∂〉, resp. Q(ω, m)〈σ〉.



Variant Elimination

Replace ω ∈ C with an indeterminate w:

x→ wx, ∂ → w−1∂, τ → wτ, σ → w−1σ.

L ∈ Q〈x, ∂〉 → Bézout relation in Frac(Q〈x, ∂〉)[w]:

S(x, ∂, w)L(wx, w−1∂) + T (x, ∂, w)(wr − 1) = u(x)M(x, ∂),

for S, L, M ∈ Q〈x, ∂〉.

L ∈ Q〈m, τ〉 → Bézout relation in Frac(Q〈m, τ〉)[w]:

S(m, τ, w)L(m,wτ) + T (m, τ, w)(wr − 1) = u(m)M(m, τ),

for S, L, M ∈ Q〈m, τ〉.



Computation by Hadamard Product

Bruno Salvy’s first instinct: f̂ j = f̂ � xj

1−xr , where∑
m≥0

amxm �
∑
m≥0

bmxm =
∑
m≥0

ambmxm.

Hadamard product algorithm (e.g., in gfun) specializes to:

W.l.o.g., L ∈ Q(m)〈τ〉 is monic of some order, o, so for any k ≥ 0,

τkr ∈
o−1⊕
`=0

Q(m)τ `.

Q(m)-dependency between the τkr by Gaussian elimination.



Direct Computation of Differential Invariants

Really a dual of the Hadamard product approach.

Q(x) =
r−1⊕
i=0

Q(t)xi for t = xr, so

L(x, δ) = L0(t, δ) + xL1(t, δ) + · · ·+ xr−1Lr−1(t, δ).

W.l.o.g., L ∈ Q(x)〈δ〉 is monic of some order, o, so for any k ≥ 0,

δk ∈
r−1⊕
i=0

o−1⊕
j=0

Q(t)xiδj .

Q(t)-dependency between the δk by Gaussian elimination.



Companion Systems and Saturation Again

Lf̂ = 0 ↔ xr+1Y ′ = A(x)Y, Y = (f̂ , . . . , f̂ (r−1))T

(CY )′ =
(
C ′ + x−(r+1)CA

)
Y, C = (c0, . . . , cr−1)

→ Cyclic-vector method on C = (1, 0, . . . , 0) to recover L.

xr+1Ỹ ′ =
(r−1⊕

j=0

A(ωjx)
)

Ỹ , Ỹ =
(
Y (x), Y (ωx), . . . , Y (ωr−1x)

)T

→ Cyclic-vector method on C̃ = (C, . . . , C) to compute ann f̂0.

Recurrence analogue of the form τ Ỹ =
(r−1⊕

j=0

ωjA(m)
)

Ỹ .



Algorithm Inspired by Turrittin’s Rank Reduction

In terms of multisections of Y and A, xr+1Y ′ = AY becomes

xr+1(Y 0 + · · ·+ Y r−1)′ = (A0 + · · ·+ Ar−1)(Y 0 + · · ·+ Y r−1).

Thus, we consider xr+1Ỹ ′ = ÃỸ , for (Loday-Richaud 2001)

Ã = (Ai−j)r
i,j=0 =


A0 Ar−1 . . . A1

A1 A0 . . . A2

...
...

. . .
...

Ar−1 Ar−2 . . . A0

 and Ỹ =


Y 0

Y 1

...

Y r−1

 .

Cyclic-vector method with (1, 0, . . . , 0).

Recurrence analogue: τ rỸ = A(m− r + 1) . . . A(m + 1)A(m)Ỹ .



Comparing Outputs of Dual Methods

Lf̂ = 0 ↔ L∗a = 0

C〈x, x−1, ∂〉 ' C〈m,σ, τ〉 but calculations in Q(x)〈∂〉 and Q(m)〈τ〉.

Λ1(x, ∂) = ann
(
f̂0, . . . , f̂r−1

)
, Λ2(m, τ) = ann

(
a0, . . . , ar−1

)
.

Λ1 ∈ Q〈xr, δ〉, Λ2 ∈ Q〈m, τ r〉.

Q(m, τ r)Λ1(x, ∂)∗ = u(τ r)v(m)Λ2(m, τ).



Timings

Ramis–Sibuya example with Maple on an Alpha EV6.7 at 667MHz:
(† means ≥ 1400s; ‡ means ≥ 128MB.)

r 2 3 4 5 6 7 8 9 10

A1 0.9 51 151 †
A1* 1.5 ‡

A2 2.4 †
A2* 2.0 ‡

A3 .6 2.3 3.0 9.0 8.9 28.7 21.5 196.9 50.0

A3* .5 2.4 2.4 12.5 10.2 43.0 30.2 123.0 71.0

A4 .4 45.2 26.0 ‡
A4* .8 121.2 1050.0 †

A5(1) .5 1.9 2.8 9.6 9.8 41.0 28.0 231.0 71.3

A5*(1) .3 1.6 1.5 6.4 4.7 19.1 11.6 47.1 25.0

A5(2) .5 4.0 6.6 89.0 56.0 †
A5*(2) .9 4.6 6.0 30.1 25.3 150 88 642.0 341.3

→ Use systems and avoid introducing algebraic numbers.
→ Complexity analysis missing. Resultants? Padé–Hermite?


