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Statement of the Problem

The r-multisections of a power series f =) <,amx™ are the
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Problem: Given a linear differential operator L = L(x, 3), compute a

common annihilator of the fj for any 0 < 5 < r and any solution f
of L.

Dual Problem: Given a linear recurrence operator L* = L*(m, 7),
compute a common annihilator of the @/ = (apm+j)m>0 for any

0 < j < r and any solution (an,)m>o of L*.




Multisections Computation Also Known as

Decimation

Decimation of linear recurrent sequences, i.e., solutions of recurrences
with constant coefficients, related to a generalization of the Graeffe

polynomial:
automatic series and number theory
cryptography
Fibonacci Quarterly

“Fast computation of special resultants” (BoFI1SaSc06)




Summability of Divergent Series

For k > 0, the series f € C[[z]] is k-summable in the direction d € R
if there exist a sector S(d, a, p) of aperture o > 7/k and a function f

admitting f as asymptotic expansion of order k, that is:

VI c S, 3C,K >0, VvneN, Vz €T,

|f(:1;) — a;jz?| < CK"™|x|"T(1 +n/k).

The function f is then unique and called “sum of f.” (Ramis)




Summation of k-Summable Series
Borel transform: By (z"t') =t"/nl, Bi(z™) =t""F/T(n/k).
Laplace transform: Lip(@)(x) = [, () exp(—tF/z¥) d(t").
LpBp(z™) =z — 2"

k-summable DV series f _Br , CV series

asymptotic/l\expansion J/sum

. L .
sum function f «—* _ function

A

f is k-summable = the k-multisections fj are 1-summable.

Summation of 1-summable series is numerically more stable.




Summing Euler’s Divergent Series

= Z(—l)”n! gl

n>0

1
Z(—l)"t” converges to the function t — ——

"0 1+t

g=L1B1g= (x — / eXp(_t/x)dt)
0
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Note: (2?0 +1)g = x, so that (zd — 1)(z?0 +1)g = 0.




Multisummability

For ki > --- >k, > 0, the series f € (C[[ |] is (k1, ..., k;)-summable
in the direction d € R if f f1 -+ fr where fZ is k;-summable.
The sum of f is then given as f = f1 +--- + f, where f; is the sum

of f;. (Ecalle, Malgrange, Ramis)

Theoretical approaches to multisummation: by iterated Laplace and

Borel transforms (Balser); by accélératrices (Ecalle).

Numerically, multisections to reduce to 1-summable series is a good,

stable approach (Thomann, Jung, Naegelé).

s (2,1)-summable (Ramis-Sibuya).




Formal Mellin Transform

(S ana™) =3 00 i, = 3 ane”

meZ meZ meZ

0 = differential operator d/dx:

6 = Eulerian operator x d/dx:
Algebra isomorphism C(x,z~*,9) ~ C(m, o, 7).

o = forward shift operator with respect to m: om = (m+ 1)o

T = backward shift operator with respect to m: ™m = (m— 1)1

For Euler’s series: (20 —1)(z?0+ 1) < (m —1)((m — 1)7 +1).




Saturation Under the Galois Group of w" =1

A .

rfl = fla)+w fwa) 4w T (g
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Cfl'@ - @Cfr ! =Cf(z) ®Cf(wz)®--- & Cf(w 1z

ann(f°,..., fr1) = lelm (ann f(2),ann f(wz), ..., ann f(wr_lx))

r—wr, 0 —>w 10,6 =0 m—m, T—owr, 0 —>w o

Computations in Q(w, x)(9), resp. Q(w, m)(o).




Variant Elimination

Replace w € C with an indeterminate w:

T — wz, 0 —w 0, T — wr, 0 — w lo.

L e Q(x,0) — Bézout relation in Frac(Q(x, 0))[w]:

S(z,0,w)L(wz,w 10) + T(x,0,w)(w" — 1) = u(x)M(z,d),

for S, L, M € Q(x, 9).

L e Q{m, 7y — Bézout relation in Frac(Q(m, 7))[w]:

S(m, T, w)L(m,wt) +T(m,7,w)(w" —1) =u(m)M(m, ),
for S, L, M € Q(m,T).




Computation by Hadamard Product

Bruno Salvy’s first instinct: f/ = f ® 1f‘;r, where

Z Amx " © Z b,xt'"t = Z Am bz .

m>0 m>0 m>0

Hadamard product algorithm (e.g., in gfun) specializes to:

W.lo.g., L € Q(m){(r) is monic of some order, o, so for any k > 0,

o—1

TR @ Q(m)'re.

£=0

Q(m)-dependency between the 7% by Gaussian elimination.




Direct Computation of Differential Invariants

Really a dual of the Hadamard product approach.

r—1
Q(z) = @@(t)xi for t = 2", so
i=0

L(x,0) = Lo(t,8) + xL1(t,8) + - + 2" 'L,._1(t,9).

W.lo.g., L € Q(x)(d) is monic of some order, o, so for any k > 0,

r—1 o—1

* e HEPQ(t)a’s.

i=0 j=0

Q(t)-dependency between the §* by Gaussian elimination.




Companion Systems and Saturation Again

— 'Y = A(2)Y,
(CY) = (C'+ 2"t DCA)Y,

— Cyclic-vector method on C' = (1,0,...,0) to recover L.

r—1
Y = (@ A(wja:))f/, Y
j=0

— Cyclic-vector method on C = (C,...,C) to compute ann fo.

Recurrence analogue of the form 7Y = (




Algorithm Inspired by Turrittin’s Rank Reduction

In terms of multisections of Y and A, 2"t'Y’ = AY becomes

xr—l—1(y0 N Yr—l)/ _ (AO N Ar—l)(yo 44 Yr—l).
Thus, we consider "Y' = AY, for (Loday-Richaud 2001)

(40 a1 A [ yo )

N At A L A
A= (A", =

1,7=0

\Ar—l AT2 AO)

Cyclic-vector method with (1,0,...,0).

~

Recurrence analogue: 7Y = A(m —r+1)... A(m + 1)A(m)Y .




Comparing Outputs of Dual Methods

Lf=0 < L*a=0

C(x,z1,9) ~ C(m,o,7) but calculations in Q(z)(d) and Q(m)(r).

Ai(z,0) = ann (fo, e fr_l) : As(m,7) = ann (ao, . ,a"“_l) .
A1 - Q<£BT,5>, A2 - @(m,TT>.

Q(m, 7" )A1(x,0)" = u(t")v(m)As(m, 7).




Timings

Ramis—Sibuya example with Maple on an Alpha EV6.7 at 667 MHz:
(t means > 1400s; + means > 128MB.)

r 2 3 4 5

Al 0.9 51

A1* 1.5 1

A2 2.4 T

A2* 2.0 1

A3 6 2.3

A3* . 2.4

A4

A4*
A5(1)
A5*(1)
A5(2)
A5*(2)

— Use systems and avoid introducing algebraic numbers.

— Complexity analysis missing. Resultants? Padé—Hermite?




