Forty years of Quicksort and Quickselect: a personal view

Conrado Martínez

Univ. Politècnica de Catalunya, Spain
Introduction

Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)
Introduction

Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

They are simple, elegant, beatiful and practical solutions to two basic problems of Computer Science: sorting and selection
Introduction

Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

They are simple, elegant, beatiful and practical solutions to two basic problems of Computer Science: sorting and selection

They are primary examples of the divide-and-conquer principle
void quicksort(vector<Elem>& A, int i, int j) {
 if (i < j) {
 int p = get_pivot(A, i, j);
 swap(A[p], A[0]);
 int k;
 partition(A, i, j, k);
 quicksort(A, i, k - 1);
 quicksort(A, k + 1, j);
 }
}
Elem quickselect(vector<Elem>& A,
 int i, int j, int m) {
 if (i >= j) return A[i];
 int p = get_pivot(A, i, j, m);
 swap(A[p], A[l]);
 int k;
 partition(A, i, j, k);
 if (m < k) quickselect(A, i, k - 1, m);
 else if (m > k) quickselect(A, k + 1, j, m);
 else return A[k];
}
void partition(vector<Elem>& A, int i, int j, int& k) {
 int l = i; int u = j + 1; Elem pv = A[i];
 for (; ;) {
 do ++l; while(A[l] < pv);
 do --u; while(A[u] > pv);
 if (l >= u) break;
 swap(A[l], A[u]);
 }
 swap(A[i], A[u]); k = u;
}
Partition

\[pv < pv ??? > pv \]

\[i \rightarrow l \rightarrow u \rightarrow j \]
Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$
The Recurrences for Average Costs

Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$

Average number of comparisons Q_n to sort n elements:

$$Q_n = n - 1 + \sum_{k=1}^{n} \pi_{n,k} \cdot (Q_{k-1} + Q_{n-k})$$
The Recurrences for Average Costs

- Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$

- Average number of comparisons $C_{n,m}$ to select the m-th out of n:

$$C_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot C_{k-1,m}$$

$$+ \sum_{k=1}^{m-1} \pi_{n,k} \cdot C_{n-k,m-k}$$
Quicksort: The Average Cost

For the standard variant, $\pi_{n,k} = 1/n$
Quicksort: The Average Cost

For the standard variant, $\pi_{n,k} = 1/n$

Average number of comparisons Q_n to sort n elements (Hoare, 1962):

$$Q_n = 2(n + 1)H_n - 4n$$

$$= 2n \ln n + (2\gamma - 4)n + 2 \ln n + \mathcal{O}(1)$$

where $H_n = \sum_{1 \leq k \leq n} 1/k = \ln n + \gamma + \mathcal{O}(1/n)$

is the n-th harmonic number and $\gamma = 0.577\ldots$

is Euler’s gamma constant.
Quickselect: The Average Cost

Average number of comparisons \(C_{n,m} \) to select the \(m \)-th out of \(n \) elements (Knuth, 1971):

\[
C_{n,m} = 2(n + 3 + (n + 1)H_n - (n + 3 - m)H_{n+1-m} - (m + 2)H_m)
\]
This is $\Theta(n)$ for any m, $1 \leq m \leq n$. In particular,

$$m_0(\alpha) = \lim_{{n \to \infty, m/n \to \alpha}} \frac{C_{n,m}}{n} = 2 + 2 \cdot H(\alpha),$$

$$H(x) = -(x \ln x + (1 - x) \ln(1 - x)).$$

with $0 \leq \alpha \leq 1$. The maximum is at $\alpha = 1/2$, where $m_0(1/2) = 2 + 2 \ln 2 = 3.386 \ldots$; the mean value is $\overline{m_0} = 3$.

Univ. Politècnica de Catalunya, Spain
Apply general techniques: recursion removal, loop unwrapping, . . .
Improving Quicksort and Quickselect

- Apply general techniques: recursion removal, loop unwrapping, . . .
- Reorder recursive calls to quicksort
Improving Quicksort and Quickselect

- Apply general techniques: recursion removal, loop unwrapping, ...
- Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles
Improving Quicksort and Quickselect

- Apply general techniques: recursion removal, loop unwrapping, . . .
- Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles
- Use samples to select better pivots
Improving Quicksort and Quickselect

- Apply general techniques: recursion removal, loop unwrapping, . . .
- Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles
- Use samples to select better pivots
Small Subfiles

It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size $\leq n_0$ and use insertion sort instead.
Small Subfiles

It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size $\leq n_0$ and use insertion sort instead.

The optimal choice for n_0 is around 20 to 25 elements.
Small Subfiles

- It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size $\leq n_0$ and use insertion sort instead.
- The optimal choice for n_0 is around 20 to 25 elements.
- Alternatively, one might do nothing with small subfiles and perform a single pass of insertion sort over the whole file.
Cutting off recursion also yields benefits for quickselect
Small Subfiles

Cutting off recursion also yields benefits for quickselect.

In (Martínez, Panario, Viola, 2002) we investigate different choices to select small subfiles and how they affect the average total cost: selection, insertion sort, optimized selection.
Small Subfiles

We have now

\[
C_{n,m} = \begin{cases}
 t_{n,m} + \sum_{k=m+1}^{n} \pi_{n,k} \cdot C_{k-1,m} & \text{if } n > n_0 \\
 b_{n,m} + \sum_{k=1}^{m-1} \pi_{n,k} \cdot C_{n-k,m-k} & \text{if } n \leq n_0
\end{cases}
\]
Let \(C(z, u) = \sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n,m} z^n u^m \)
Let $C(z, u) = \sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n,m} z^n u^m$

It can be shown that

$$C(z, u) = C_{n_0}(z, u) + \int_0^z \frac{(1 - t)(1 - ut)}{(1 - z)(1 - uz)} \frac{\partial T(t, u)}{\partial t} \, dt$$

where $T(z, u) = \sum_{n \geq 0} \sum_{1 \leq m \leq n} t_{n,m} z^n u^m$ and $C_{n_0}(z, u)$ is the only part depending on the $b_{n,m}$'s and n_0.

Univ. Politècnica de Catalunya, Spain
In order to determine the optimal choice for n_0 we need only to compute $[z^n u^m] C_{n_0}(z, u)$.
In order to determine the optimal choice for n_0, we need only to compute $[z^n u^m] C_{n_0}(z, u)$.

We assume $t_{n,m} = \alpha n + \beta + \gamma/(n - 1)$ and

$$b_{n,m} = K_1 n^2 + K_2 n + K_3 m^2 + K_4 m + K_5 mn + K_6$$
$$+ K_7 g^2 + K_8 g + K_9 gn,$$

where $g \equiv \min\{m, n - m + 1\}$, to study the best choice for n_0, as a function of α, β, γ and the K_i’s.
Using insertion sort with $n_0 \leq 10$ reduces the average cost; the optimal choice for n_0 is 5.
Using **insertion sort** with $n_0 \leq 10$ reduces the average cost; the **optimal choice for** n_0 **is** 5.

Selection (we locate the minimum, then the second minimum, etc.) reduces the average cost if $n_0 \leq 11$; the **optimum** n_0 **is** 6.
Small Subfiles

- Using **insertion sort** with \(n_0 \leq 10 \) reduces the average cost; the **optimal choice for** \(n_0 \) **is 5**

- **Selection** (we locate the minimum, then the second minimum, etc.) reduces the average cost if \(n_0 \leq 11 \); the **optimum** \(n_0 \) **is 6**

- **Optimized selection** (looks for the \(m \)-th from the minimum or the maximum, whatever is closer) yields improved average performance if \(n_0 \leq 22 \); the **optimum** \(n_0 \) **is 11**
In quicksort with median-of-three, the pivot of each recursive stage is selected as the median of a sample of three elements (Singleton, 1969)
In quicksort with median-of-three, the pivot of each recursive stage is selected as the median of a sample of three elements (Singleton, 1969).

This reduces the probability of uneven partitions which lead to quadratic worst-case
Median-of-three

We have in this case

$$\pi_{n,k} = \frac{(k - 1)(n - k)}{\binom{n}{3}}$$
Median-of-three

We have in this case

\[\pi_{n,k} = \frac{(k - 1)(n - k)}{\binom{n}{3}} \]

The average number of comparisons \(Q_n \) is (Sedgewick, 1975)

\[Q_n = \frac{12}{7} n \log n + \mathcal{O}(n), \]

roughly a 14.3% less than standard quicksort.
To study quickselect with median-of-three, in (Kirschenhofer, Martínez, Prodingher, 1997), we use bivariate generating functions

\[C(z, u) = \sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n,m} z^n u^m \]
To study quickselect with median-of-three, in (Kirschenhofer, Martínez, Prodinger, 1997), we use bivariate generating functions

$$C(z, u) = \sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n,m} z^n u^m$$

The recurrences translate into second-order differential equations of hypergeometric type

$$x(1 - x)y'' + (c - (1 + a + b)x)y' - aby = 0$$
Median-of-three

We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully ;-)) the coefficients.
Median-of-three

We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully ;-)) the coefficients.

For instance, for the average number of passes we get

\[P_{n,m} = \frac{24}{35} H_n + \frac{18}{35} H_m + \frac{18}{35} H_{n+1-m} + O(1) \]
Median-of-three

We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully ;-)) the coefficients.

And for the average number of comparisons

\[C_{n,m} = 2n + \frac{72}{35} H_n - \frac{156}{35} H_m - \frac{156}{35} H_{n+1-m} \]

\[+ 3m - \frac{(m - 1)(m - 2)}{n} + O(1) \]
An important particular case is $m = \lceil n/2 \rceil$ (the median) were the average number of comparisons is

$$\frac{11}{4}n + o(n)$$

Compare to $(2 + 2 \ln 2)n + o(n)$ for standard quickselect.
In general,

\[m_1(\alpha) = \lim_{n \to \infty, m/n \to \alpha} \frac{C_{n,m}}{n} = 2 + 3 \cdot \alpha \cdot (1 - \alpha) \]

with \(0 \leq \alpha \leq 1\). The mean value is \(\overline{m_1} = \frac{5}{2}\); compare to \(3n + o(n)\) comparisons for standard quickselect on random ranks.
Optimal Sampling

In (Martínez, Roura, 2001) we study what happens if we use samples of size \(s = 2t + 1 \) to pick the pivots, but \(t = t(n) \).
In (Martínez, Roura, 2001) we study what happens if we use samples of size $s = 2t + 1$ to pick the pivots, but $t = t(n)$.

The comparisons needed to pick the pivots have to be taken into account:

$$Q_n = n - 1 + \Theta(s) + \sum_{k=1}^{n} \pi_{n,k} \cdot (Q_{k-1} + Q_{n-k})$$
Optimal Sampling

Traditional techniques to solve recurrences cannot be used here
Traditional techniques to solve recurrences cannot be used here

We make extensive use of the continuous master theorem (Roura, 1997)
Optimal Sampling

- Traditional techniques to solve recurrences cannot be used here.
- We make extensive use of the continuous master theorem (Roura, 1997).
- We also study the cost of quickselect when the rank of the sought element is random.
Optimal Sampling

- Traditional techniques to solve recurrences cannot be used here
- We make extensive use of the continuous master theorem (Roura, 1997)
- We also study the cost of quickselect when the rank of the sought element is random
- Total cost:
 \[\text{# of comparisons} + \xi \cdot \text{# of exchanges} \]
Theorem 1. If we use samples of size s, with $s = o(n)$ and $s = \omega(1)$ then the average total cost Q_n of quicksort is

$$Q_n = (1 + \xi/4)n \log_2 n + o(n \log n)$$

and the average total cost C_n of quickselect to find an element of given random rank is

$$C_n = 2(1 + \xi/4)n + o(n)$$
Theorem 2. Let \(s^* = 2t^* + 1 \) denote the optimal sample size that minimizes the average total cost of quickselect; assume the average total cost of the algorithm to pick the medians from the samples is \(\beta s + o(s) \). Then

\[
t^* = \frac{1}{2\sqrt{\beta}} \cdot \sqrt{n} + o\left(\sqrt{n}\right)
\]
Theorem 3. Let $s^* = 2t^* + 1$ denote the optimal sample size that minimizes the average number of comparisons made by quicksort. Then

$$t^* = \sqrt{\frac{1}{\beta} \left(\frac{4 - \xi(2 \ln 2 - 1)}{8 \ln 2} \right)} \cdot \sqrt{n} + o\left(\sqrt{n}\right)$$

if $\xi < \tau = 4/(2 \ln 2 - 1) \approx 10.3548$
Optimal sample size (Theorem 3) vs. exact values
Optimal Sampling

If exchanges are expensive ($\xi \geq \tau$) we have to use fixed-size samples and pick the median (not optimal) or pick the $(\psi \cdot s)$-th element of a sample of size $\Theta(\sqrt{n})$.
Optimal Sampling

If exchanges are expensive ($\xi \geq \tau$) we have to use fixed-size samples and pick the median (not optimal) or pick the $(\psi \cdot s)$-th element of a sample of size $\Theta(\sqrt{n})$.

If the position of the pivot is close to either end of the array, then few exchanges are necessary on that stage, but a poor partition leads to more recursive steps. This trade-off is relevant if exchanges are very expensive.
Optimal Sampling

The variance of quickselect when \(s = s(n) \to \infty \) is

\[
V_n = \Theta \left(\max \left\{ \frac{n^2}{s}, n \cdot s \right\} \right)
\]
The variance of quickselect when $s = s(n) \to \infty$ is

$$V_n = \Theta \left(\max \left\{ \frac{n^2}{s}, n \cdot s \right\} \right)$$

The best choice is $s = \Theta(\sqrt{n})$; then $V_n = \Theta(n^{3/2})$ and there is concentration in probability
The variance of quickselect when $s = s(n) \to \infty$ is

$$V_n = \Theta \left(\max \left\{ \frac{n^2}{s}, n \cdot s \right\} \right)$$

The best choice is $s = \Theta(\sqrt{n})$; then $V_n = \Theta(n^{3/2})$ and there is concentration in probability.

We conjecture this type of result holds for quicksort too.
Adaptive Sampling

In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to $\alpha = m/n$.
Adaptive Sampling

In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to $\alpha = m/n$

In general: $r(\alpha) = \text{rank of the pivot within the sample, when selecting the } m\text{-th out of } n \text{ elements and } \alpha = m/n$
Adaptive Sampling

In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to $\alpha = m/n$

In general: $r(\alpha) = \text{rank of the pivot within the sample, when selecting the } m\text{-th out of } n \text{ elements and } \alpha = m/n$

Divide $[0, 1]$ into ℓ intervals with endpoints $0 = a_0 < a_1 < a_2 < \cdots < a_\ell = 1$ and let r_k denote the value of $r(\alpha)$ for α in the k-th interval
Adaptive Sampling

For median-of-\((2t + 1)\): \(\ell = 1\) and \(r_1 = t + 1\)
Adaptive Sampling

- For median-of-\((2t + 1)\): \(\ell = 1\) and \(r_1 = t + 1\)
- For proportion-from-\(s\): \(\ell = s\), \(a_k = k/s\) and \(r_k = k\)
Adaptive Sampling

- For median-of-$(2t + 1)$: $\ell = 1$ and $r_1 = t + 1$
- For proportion-from-s: $\ell = s$, $a_k = k/s$ and $r_k = k$
- "Proportion-from"-like strategies: $\ell = s$ and $r_k = k$, but the endpoints of the intervals $a_k \neq k/s$
Adaptive Sampling

- For median-of-\((2t + 1)\): \(\ell = 1\) and \(r_1 = t + 1\)
- For proportion-from-\(s\): \(\ell = s\), \(a_k = k/s\) and \(r_k = k\)
- "Proportion-from"-like strategies: \(\ell = s\) and \(r_k = k\), but the endpoints of the intervals
 \(a_k \neq k/s\)
- A sampling strategy is symmetric if

\[
r(\alpha) = s + 1 - r(1 - \alpha)
\]
Theorem 4. Let \(f(\alpha) = \lim_{n \to \infty, m/n \to \alpha} \frac{C_{n,m}}{n} \). Then

\[
f(\alpha) = 1 + \frac{s!}{(r(\alpha) - 1)!(s - r(\alpha))!} \times \\
\left[\int_{\alpha}^{1} f \left(\frac{\alpha}{x} \right) x^{r(\alpha)} (1 - x)^{s-r(\alpha)} \, dx \\
+ \int_{0}^{\alpha} f \left(\frac{\alpha - x}{1 - x} \right) x^{r(\alpha)-1} (1 - x)^{s+1-r(\alpha)} \, dx \right].
\]
Here $f(\alpha)$ is composed of two “pieces” f_1 and f_2 for the intervals $[0, 1/2]$ and $(1/2, 1]$.
Adaptive Sampling: Proportion-from-2

Here \(f(\alpha) \) is composed of two “pieces” \(f_1 \) and \(f_2 \) for the intervals \([0, 1/2]\) and \((1/2, 1]\)

Because of symmetry we need only to solve for \(f_1 \)

\[
f_1(x) = a \left((x - 1) \ln(1 - x) + \frac{x^3}{6} + \frac{x^2}{2} - x \right)
- b(1 + \mathcal{H}(x)) + cx + d.
\]
The maximum is at $\alpha = 1/2$. There $f(1/2) = 3.112 \ldots$
Adaptive Sampling: Proportion-from-2

- The maximum is at $\alpha = 1/2$. There
 $$f(1/2) = 3.112 \ldots$$

- Proportion-from-2 beats standard quickselect:
 $$f(\alpha) \leq m_0(\alpha)$$
Adaptive Sampling: Proportion-from-2

- The maximum is at $\alpha = 1/2$. There $f(1/2) = 3.112 \ldots$
- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_0(\alpha)$
- Proportion-from-2 beats median-of-three in some regions: $f(\alpha) \leq m_1(\alpha)$ if $\alpha \leq 0.140 \ldots$ or $\alpha \geq 0.860 \ldots$
Adaptive Sampling: Proportion-from-2

- The maximum is at $\alpha = 1/2$. There $f(1/2) = 3.112\ldots$

- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_0(\alpha)$

- Proportion-from-2 beats median-of-three in some regions: $f(\alpha) \leq m_1(\alpha)$ if $\alpha \leq 0.140\ldots$ or $\alpha \geq 0.860\ldots$

- The grand-average: $C_n = 2.598 \cdot n + o(n)$
Adaptive Sampling: Proportion-from-2

Graph showing functions $m_0(\alpha)$ and $m_1(\alpha)$ with values at $\alpha = 0.140$, 0.5, and 1.0.
For proportion-from-3,

\[f_1(x) = -C_0(1 + \mathcal{H}(x)) + C_1 + C_2x + C_3K_1(x) + C_4K_2(x), \]
\[f_2(x) = -C_5(1 + \mathcal{H}(x)) + C_6x(1 - x) + C_7, \]

with

\[K_1(x) = \cos(\sqrt{2}\ln x) \cdot \sum_{n \geq 0} A_n x^{n+4} + \sin(\sqrt{2}\ln x) \cdot \sum_{n \geq 0} B_n x^{n+4}, \]
\[K_2(x) = \sin(\sqrt{2}\ln x) \cdot \sum_{n \geq 0} A_n x^{n+4} - \cos(\sqrt{2}\ln x) \cdot \sum_{n \geq 0} B_n x^{n+4}. \]
Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There $f(1/3) = f(2/3) = 2.883\ldots$
Adaptive Sampling: Proportion-from-3

Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There
$$f(1/3) = f(2/3) = 2.883 \ldots$$

The median is not the most difficult rank:
$$f(1/2) = 2.723 \ldots$$
Adaptive Sampling: Proportion-from-3

- Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There
 \[f(1/3) = f(2/3) = 2.883 \ldots \]
- The median is not the most difficult rank:
 \[f(1/2) = 2.723 \ldots \]
- Proportion-from-3 beats median-of-three in some regions:
 \[f(\alpha) \leq m_1(\alpha) \text{ if } \alpha \leq 0.201 \ldots, \]
 \[\alpha \geq 0.798 \ldots \text{ or } 1/3 < \alpha < 2/3 \]
Adaptive Sampling: Proportion-from-3

- Two maxima at $\alpha = 1/3$ and $\alpha = 2/3$. There
 $f(1/3) = f(2/3) = 2.883\ldots$

- The median is not the most difficult rank:
 $f(1/2) = 2.723\ldots$

- Proportion-from-3 beats median-of-three in some regions: $f(\alpha) \leq m_1(\alpha)$ if $\alpha \leq 0.201\ldots$, $\alpha \geq 0.798\ldots$ or $1/3 < \alpha < 2/3$

- The grand-average: $C_n = 2.421 \cdot n + o(n)$
Adaptive Sampling: Batfind

\[f(\alpha) \]

\[m_1(\alpha) \]

Univ. Politècnica de Catalunya, Spain
Adaptive Sampling: Batfind

\[f(\alpha) \]

\[m_1(\alpha) \]

\[\frac{4}{3} \]

\[2.75 \]

\[2.723 \]

\[2 \]

\[0.0 \quad 0.201 \quad 0.5 \quad 1.0 \]

Univ. Politècnica de Catalunya, Spain
Adaptive Sampling: ν-find

Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 - \nu$
Adaptive Sampling: ν-find

Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 - \nu$

Same differential equation, same f_i’s, with $C_i = C_i(\nu)$
Adaptive Sampling: ν-find

- Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 - \nu$
- Same differential equation, same f_i's, with $C_i = C_i(\nu)$
- If $\nu \to 0$ then $f_\nu \to m_1$ (median-of-three)
Adaptive Sampling: ν-find

- Like proportion-from-3, but $a_1 = \nu$ and $a_2 = 1 - \nu$
- Same differential equation, same f_i's, with $C_i = C_i(\nu)$
- If $\nu \to 0$ then $f_\nu \to m_1$ (median-of-three)
- If $\nu \to 1/2$ then f_ν is similar to proportion-from-2, but it is not the same
Theorem 5. There exists a value ν^*, namely, $\nu^* = 0.182 \ldots$, such that for any ν, $0 < \nu < 1/2$, and any α,

$$f_{\nu^*}(\alpha) \leq f_{\nu}(\alpha).$$

Furthermore, ν^* is the unique value of ν such that f_{ν} is continuous, i.e.,

$$f_{\nu^*,1}(\nu^*) = f_{\nu^*,2}(\nu^*).$$
Obviously, the value ν^* minimizes the maximum

$$f_{\nu^*}(1/2) = 2.659 \ldots$$

and the mean

$$\bar{f}_{\nu^*} = 2.342 \ldots$$
Adaptive Sampling: ν-find

Obviously, the value ν^* minimizes the maximum

$$f_{\nu^*}(1/2) = 2.659 \ldots$$

and the mean

$$\bar{f}_{\nu^*} = 2.342 \ldots$$

If $\nu > \tilde{\nu} = 0.268 \ldots$ then f_{ν} has two absolute maxima at $\alpha = \nu$ and $\alpha = 1 - \nu$; otherwise there is one absolute maximum at $\alpha = 1/2$
Adaptive Sampling: ν-find

If $\nu \leq \nu' = 0.404 \ldots$ then ν-find beats median-of-3 on average ranks: $\bar{f}_{\nu} \leq \frac{5}{2}$
Adaptive Sampling: \(\nu \)-find

1. If \(\nu \leq \bar{\nu}' = 0.404 \ldots \) then \(\nu \)-find beats median-of-3 on average ranks: \(\bar{f}_\nu \leq 5/2 \)

2. If \(\nu \leq \nu'_m = 0.364 \ldots \) then \(\nu \)-find beats median-of-3 to find the median: \(f_\nu(1/2) \leq 11/4 \)
Adaptive Sampling: ν-find

- If $\nu \leq \nu' = 0.404 \ldots$ then ν-find beats median-of-3 on average ranks: $\overline{f}_\nu \leq 5/2$

- If $\nu \leq \nu'_m = 0.364 \ldots$ then ν-find beats median-of-3 to find the median:
 \[f_\nu(1/2) \leq 11/4 \]

- If $\nu \leq \nu' = 0.219 \ldots$ then ν-find beats median-of-3 for all ranks:
 \[f_\nu(\alpha) \leq m_1(\alpha) \]
Adaptive Sampling: ν-find

\[
f_{1,\nu}(\nu)\]
\[
f_{\nu}(1/2)\]
\[
m_{1}(\nu)\]

\[
f_{2,\nu}(\nu)\]

ν^*, ν', $\tilde{\nu}$, ν'_{m}
Theorem 6. Let \(f^{(s)}(\alpha) = \lim_{n \to \infty, m/n \to \alpha} \frac{C_{n,m}}{n} \) when using samples of size \(s \). Then for any adaptive sampling strategy such that \(\lim_{s \to \infty} r(\alpha)/s = \alpha \)

\[
f^{(\infty)}(\alpha) = \lim_{s \to \infty} f^{(s)}(\alpha) = 1 + \min(\alpha, 1 - \alpha).
\]
Partial sort: Given an array A of n elements, return the m smallest elements in A in ascending order.
Partial Sort

Partial sort: Given an array A of n elements, return the m smallest elements in A in ascending order.

Heapsort-based partial sort: Build a heap, extract m times the minimum; the cost is $\Theta(n + m \log n)$.

Univ. Politècnica de Catalunya, Spain
Partial Sort

Partial sort: Given an array A of n elements, return the m smallest elements in A in ascending order.

Heapsort-based partial sort: Build a heap, extract m times the minimum; the cost is $\Theta(n + m \log n)$.

“Quickselsort”: find the m-th with quickselect, then quicksort $m - 1$ elements to its left; the cost is $\Theta(n + m \log m)$.
void partial_quicksort(vector<Elem>& A,
 int i, int j, int m) {
 if (i < j) {
 int p = get_pivot(A, i, j);
 swap(A[p], A[l]);
 int k;
 partition(A, i, j, k);
 partial_quicksort(A, i, k - 1, m);
 if (k < m-1)
 partial_quicksort(A, k + 1, j, m);
 }
}
Partial Quicksort

Average number of comparisons $P_{n,m}$ to sort m smallest elements:

$$P_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m}$$

$$+ \sum_{k=1}^{m} \pi_{n,k} \cdot (P_{k-1,k-1} + P_{n-k,m-k})$$
Partial Quicksort

Average number of comparisons $P_{n,m}$ to sort m smallest elements:

$$P_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m}$$

$$+ \sum_{k=1}^{m} \pi_{n,k} \cdot (P_{k-1,k-1} + P_{n-k,m-k})$$

But $P_{n,n} = Q_n = 2(n + 1)H_n - 4n!$
Partial Quicksort

The recurrence for $P_{n,m}$ is the same as for quickselect but the toll function is

$$n - 1 + \sum_{0 \leq k < m} \pi_{n,k} Q_k$$
Partial Quicksort

The recurrence for $P_{n,m}$ is the same as for quickselect but the toll function is

$$n - 1 + \sum_{0 \leq k < m} \pi_{n,k} Q_k$$

For $\pi_{n,k} = 1/n$, the solution is

$$P_{n,m} = 2n + 2(n + 1) H_n$$
$$- 2(n + 3 - m) H_{n+1-m} - 6m + 6$$
Partial Quicksort

Partial quicksort makes

$$2m - 4H_m + 2$$

comparisons less than “quickselsort”
Partial Quicksort

- Partial quicksort makes

\[2m - 4H_m + 2 \]

comparisons less than “quickselsort”

- It makes \(m/3 - 5H_m/6 + 1/2 \) exchanges less than “quickselsort”
Partial Quicksort

Partial quicksort makes

\[2m - 4H_m + 2 \]

comparisons less than “quickselsort”

It makes \[m/3 - 5H_m/6 + 1/2 \] exchanges less than “quickselsort”

Why? Short, intuitive explanation?