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Abstract

I discuss two-dimensional lattice models of closed
fluctuating membranes, or vesicles. The underlying
mathematical model is that of self-avoiding polygons and
their enumeration by perimeter and area. By adding the
constraint of partial directedness, one gets solvable
models in the sense that an explicit expression for the
generating function can be given in terms of alternating
g-series. An asymptotic analysis leads to an explicit
calculation of the scaling behaviour around the critical
point in terms of the Airy function.
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Combinatorial Enumeration of

Vesicles

vesiculum (latin) = bubble

e physical motivation:

— polygons as models of vesicles
(= closed fluctuating membranes)

— statistical mechanics of vesicles
— phase transition in the thermodynamic limit

— tricritical phase diagram

e partially directed vesicles — solvable models
— non-linear functional equations

— generating functions

e asymptotic analysis:
— perturbation expansion — critical exponents

— contour integral representation — coalescent
saddle points — scaling function



Polygon Models of Vesicles

e 3-dimensional bubble (e.g. bi-lipid layer membrane),

surface tension, osmotic pressure, ...

e 2-dimensional lattice model: polygons on the square

lattice with area and perimeter fugacities

Cm,n» Number of polygons with area m and perimeter 2n

G(z,q) = Z Cmn®"q" generating function
n,m

wanted:
e an explicit formula for G(z, q)

e information on its singularity structure



Statistical Mechanics

system size: area m, thermodynamic limit: m — oo

energy of vesicle ¢ proportional to perimeter 2n:
H(¢) = —E n(¢)

finite-area partition function:

Tm= 3 e PH@O —N"¢,  PPn

|p|=m n

now write

Zm(z) = Z Crn&" r = et

n

to identify with the generating function:

G(z,q) = ) " Zm()

thermodynamic limit: relation to radius of

convergence

Go(z) = Hm (Zp(z)) "™

mMm—00

phase transition = non-analyticity in g.(x)



Existence of Thermodynamic

Limit and Phase Transition

Consider Qn(q) =) ., cm,nq™

AV,

: : leanl Cm27n2

mi1-+ma=m

implies Qnq+n(9) > qQn, (9)@ny(q)

Subadditivity = z.(q) = lim, o (@~ (q)) ™ exists

concatenation Crm+1,n1+ns2

g = 1: self-avoiding polygons
Qn(1) ~ psaw™™ =  x(1) = psaw ™’
g > 1: consider squares of size n/2 x n/2

Qnlq) ~ qn2/4—i—0(n) = x.(q) =0forg>1

Jump of z.(q) at ¢ = 1 = Phase Transition!




Further results tor ¢ > 1:

Theorem 1 (Prellberg, Owczarek (1999)) Let
Qn(q) be the finite-perimeter partition function of

polygons on the square lattice. Then

as 1 = n—
Qnlq) ~ Q%(q) = rEp= DR A

X k=—00
exponentially fast as n — oo.
Ideas for proof:
e Partition function is dominated by convex polygons

e Convex polygons are obtained by cutting off corners
from rectangles

Understanding Q%°(q):

e Finite-perimeter partition function of rectangles:
n—1
k(n—k
S
k=1

e Area generating function of Ferrer diagrams

(corners):




Tricritical Phase Diagram

q
tricritical
point
1 “~
qc()
0 I I
0 Tt 1 x

¢.(x) singular in x = x; = phase transition
G(x,q) diverges at q.(x) for z > x;
G(z,q) is singular at g.(z) = 1 for z < x4

G(z,1) is finite with singularity exponent -, as

r — It
G(z¢, q) has a singularity with exponent v; as ¢ — 1

tricritical scaling function f with crossover exponent

¢ = Yu/Ve:
G*"(z,q) ~ (1 —q) " f ({1 — ¢}~ *{a: — z})

where f(z) ~ 277 as z = o0, f(z) ~1las z =0



Partially Directed Vesicles

partial directedness leads to solvability:

Solution via e.g.
e recurrence relations (Temperley ’52, Brak ’90)
e g-extension of an algebraic language (Delest '84)
e functional equations (Bousquet-Melou ’93)

single-variable generating function: algebraic or rational

two-variable generating function: quotient of g-series



Non-Linear Functional Equations

Method of Inflation:

Distinguish horizontal (x) and vertical (y) steps:

G(2,9,0) =Y Cmnon, @Y™

Increase the height of each column by one:

G(z,y,q9) — G(qz,y,9)y

Construct set of polygons recursively.

A simple example:

Columns

[

C(z) Clqx)y  qzy

qzy
Cla,9,9) =Clazy, Qytaey = Ol@y,d) =1



More complex models give non-linear
equations:

Bar-graph Polygons

+.+J:

qry qrB(z)

B(z,y,q) = B(qx,y,q)y+{1+ B(gz,y,q)} ax{y + B(z,y,9)}

Staircase Polygons

L. cerdl

S(z) S(gr)y  S(qz)S(z)  qwy qxS(z)

S(z,y,q9) = {S(qz,y,q) + qr} {y + S(z,y,9)}



Directed Column-Convex Polygons:

Keep track of the height r of the rightmost column

Nz My, N

D(z,y,q;p) = ) cp™v ay g’
Inflation:

D(qz,y,q; 1)1y

Multiplicity (r — 1) in sliding concatenation:

0

p=1

Directed Column-Convex Polygons

—

D (x; p) D(gz; p)yp Dy;(qz;1)geD(z; )  D(qz;1)D(z; p)

D, (gqz;1)qzyp  gzyp  qezD(z;p)




Functional equation:
D(z,y,q¢;0) = {1+ Dulgz,y,¢;1)} gz {yp+ D(z,y,q; 1)}
+ D(gz,y,q; p)yp + D(qz,y,4;1)D (2, y, q; 1)
Differentiate with respect to u and set u = 1:
d = {1+D,}qx{y+d}+D{y+d}
dy = {1+Dptqr{y+du}t+D{y+du}+Duy

where now

d(z,y,q) = D(z,y,q;1) d.(z,y,q9) = Dyu(z,y,q;1)

and

D(z,y,q) = d(qz,y, q) D,(z,y,q9) =d.(qz,y,q)

Simplify this system further to get one equation in

D(z) = D(z,y,¢;1):

0 = D(¢%)D(gz)D(x)
+ yD(¢°z)D(gz) + yD(¢*z) D(z) — (1 + ¢)D(gz)D(z)
+ y’D(¢°z) — y(1+ ¢)D(gz) + q(1 + gz(y — 1)) D(x)
+ yg'z(y — 1)

It turns out that this equation can be solved
explicitely. . .



Solving the Functional Equations

Functional equations of the form
G(2)G(gz) + a(z)G(z) + b(2)G(qz) + c(2z) =0

can be linearised with the transformation
H(gx)

G(r) =« Hiz) b(x)

which yields
o’ H(q*z)+ala(z)—b(gz) H (gz)+[c(z) —a(z)b(x)] H (z) = 0

We will apply the following lemma:

Lemma 1 Consider a linear functional equation of the
form

N N
z) + Z apH(q"x) with Z ap =0
k=0 k=0

with ay, independent of x. The solution which is reqular
at ¢ = 0 s given by
Z (n) with A(t Zaktk’
Hm 1 )

Note: the condition A(1) = 0 is crucial.



Staircase polygons:

S(z,vy,q) ={5(qx,y,q) + gz} {y + S(z,y,9)}

choose o = y and write
T(qzx)
S(x) = —1
@=v(765 1)
this implies

0=yT(¢’z) + (qz — 1 — y)T(qz) + T(x)

whence L 14
At) == - —Fp 4 Iy
q q q
now A(1) = 0, and applying Lemma 1 gives

. (_ga)ng)
-3

= (4,99 On
with the ¢-product notation
n—1
(@1, 22, 2k @) = || (1=21¢™)(1—22¢™) ... (1—28q™)
m=0

thus

D (—qzw)”q(g)

n=0 (2.9%:9)n _ 4

S(z,y,9) =y

$o° (—qw)”q(g)

n=0 (q,9Y;9)n



Directed column-convex polygons:

“Cubic” functional equation

0

D(q*z)D(qx)D(x)

yD(¢°x)D(qx) + yD(q*x) D(x) — (1 + q)D(qx)D(x)
y*D(¢*x) — y(1 + q)D(gx) + q(1 + qz(y — 1)) D(x)
ygz(y — 1)

+ 4+

Surprisingly, the transformation

o= (5

leads again to a linearisation

0 = v’E(¢’°z) —ylg+y+1E(¢°z)
+ ly+q+qy+ Cz(y —1)]E(gz) — ¢E(x)

The conditions of Lemma 1 are satisfied, and one gets

B~ 3 (- 1)gz)"q%)

(9,99, Y;9)n

n=0



Focus on Staircase Polygons

Notation: replace S(z, vy, q) by “generic” G(x,y,q)

]

[

Distinguish horizontal (z) and vertical (y) steps:

G(2,9,0) =Y _ Cmmon, @Y q"

Functional equation

L. ceed

G(z) G(gr)y Glgz)G(z)  qzy qzG(z)

G(z,y,q) = {G(qz,y,q) + gz} {y + G(z,9,9)}



Solution of the Functional

Equation

G(z,y,q) = {G(gz,y,q) + gz} {y + G(z,y,9)}
is solved by

([ H(¢’z,qy,9)
Cloy.0) =y ( H(qz,qy,q) !

where

= (—2)ng?)

H(z,y,q) = =101(0;y;¢, 2
( ) nz::O (45 D)n(y; D ( )
with the g-product notation
n—1
(tan = ][ (1—td™) .
m=0

The perimeter-generating function is algebraic:

l—-z—vy l—z—y ’
G(ZE,y,l) — 9 - ( 9 ) — Y

How can one understand the limit ¢ — 17




Main Result

We get an asymptotic expression for G(z,y, q) as
e=1—-q—0:

1

1 (14/3 .—2/3 _
G(z,q) ~ 5 7 4+ 472/3.1/3 Al (4 © 11/4 x})

Ai (44/3e=2/3{1/4 — z})

The limit € — 0 gives

Important: our result is valid uniformly in a whole
neighbourhood of z = 1/4 as ¢ — 0, and not just in the

scaling limit which involves simultaneously € — 0 and
r — 1/4.

Comparing to

G (z,q) ~ (1—q) " f ({1 — ¢}~ *{z: — 2})

gives .
fle) =~ ili((j))

and



Ingredients of the Proof

e Finding a suitable contour integral representation
e g-product asymptotics

e Uniform saddle point asymptotics

Finding a Contour Integral

We need to evaluate

Hawd) =2, e

Standard Trick: write an alternating series as a contour

o)

Y; On

integral.
- 1 T
o n n = — S . d
T;)( z)"e 271 Ca: C(S)sm(ﬂs) i

C runs counterclockwise around the zeros of sin(7s).



Simple Example A

S

(o1 z m
op(—2) =) = 55 P FL T snes)

n=0 n
1 —c+100
= 2— ZCSF(_S)CZS
Tt ) _—c—ico

making use of the reflection formula

T(s)[(1—s) = ——

sin(ms)
Simple Example B

© (—z)ng(3) —etico gsgls) g
(w;Q)oo=Z< A 1/ ! ds

(¢; @)n 2711 | _o_iso (g;)s sin(ms)

n=0
where the g-product (x;q), is extended to complex

values of n via

ﬁ 1—2¢"  (2;9)oo

11—zt (265 Q) oo

(x;Q)s —

n=0

No reflection formula: bad for the derivation of

asymptotic expansions.



g-analogue of reflection formula

Consider that

Ty(s) = (1-9)' *(g9)s—1 = T(s) asq—1
In analogy to I'(s)I'(1 — s) consider

Ag(s) = (g59)s-1(q;9)—s -
e We have

Agls) = Ag(1-s)

21
A = A
Q(S) Q(S+ —Iqu)
Ag(s) = —q 7 Ag(s+1)

2711
—loggq

e A,(s) has simple poles at s =n+m for integer

m and n with residues
271 (—1)”q(g)

A ° p— p—
Res [A4(s); s n—l—m_logq] oz d

e A,(s) has no zeros.



Simple Example B (revisited)

. (—z)"q(?)

(T;0) 0 = Z

—~ (G Dn
—lo x’
= c4 7{ A,(s)ds
2wt Je (g5 9)s
log g z\°
— —_ . e dS
A
47
—logg X X X
27
—logg X X X
X : X—>
1 2
=2 X X X
]
contour C o84
47
logqg X X X




log g AN
. 0o — — ; —s— d
(x;q) 5 7€<Q> (¢;9)—s—1ds

Change the integration variable to z = ¢ °

A

contour C’

cut

log

. " loggq
(2: g = — D Q)oojg g esr
CI

271 (2;9) o




Formally, we summarize this in

Lemma 2 For complex x with |arg(x)| < 7 and
0<qg<1wehave for0 < p<1

log =

(5 9) oo 1 /pHOO > Toggq
P

—1200 (Z; Q>oo

(;9)00  2mi

dz

Analogously, we obtain

Lemma 3 For complex x with |arg(x)| < m, complex y
with y # q~™ for non-negative integer n, and 0 < g < 1
we have for 0 < p <1

1 ‘) oo p+100 ) oo o
H(z,y.q) (g;9) / (y/2;9) L
p

2T (Y5 Qoo Jpice  (%5@)so

Proof: Calculus of residues m

In hindsight, simply observe that

(~1)"q(3)

Res [(2;¢9) ;2 =q¢ "] = — n=0,1,2,...

(45 9)n(q; @) o
contains much of the structure of
= (—2)g®)

H(x7 Y, Q) — Z (q; Q)n<y; Q)n

n=0




Asymptotics of g-Products

We expand

log(t;q)os = Y log(1—tq")

Heuristically, applying

! B, ..
et—lzzﬁt

and blatantly exchanging the order of summation, we get

1 1
log(;q) o ~ loqulz(t) +5 log(1 —t) + R(t,q)
with
00 B2n o1 d 2n—2 4
R0 =Y rtosa™ (1) 1

and the Euler dilogarithm

. — 1"
ng(t) = Z W
m=1



Asymptotics of g-Products (ctd.)

Lemma 4 Fort in any compact domain such that
larg(l —t)| <7 and real 0 < ¢ < 1

1
log q

1
log(t; @)oo = Lia(t) + ; log(1 — t) + O(logq)
as q — 1.

Proof: Euler-Maclaurin formula m

For t = q we use the conjugate modulus transformation

(4 9)s0 = (r/a)"/**y/ _?:gq 0 71%0

where r = exp (47%/logq) and 0 < ¢ < 1. Thus

T n 11 21
= —lo
6logg 2 g—logq

log(¢; q) oo

Needed later:

, =, ™ " log(1 — u
LIQ(t):ZW:_/O g(u )
m=1

obeys a functional equation for 0 < x <1

7T2

Lig(x) + Liz(1 — z) = i log(x)log(1 — x)



Uniform ¢-Bessel Asymptotics

Restrict to 0 < z,y,q < 1 and write € = —logg.

Lemma 5
H(z,y,q) =
+200
L /P o = {og(2) log(m)+Li2(z)—Liz(y/z)}\/1 —y/z dz
2T p—1i00 L=z

xe%{Lb(y)—%} 2T £
\/5(1_@ {1+ 0()}

where y < p < 1.

Proof: Carefully insert the ¢g-product asymptotics into

1 (¢;9)o /”“"O (y/2;q)00 _lozs
p

z Toga(dz
— 17200 (Z; Q)oo

H —
S 271 (Y5 ¢) 0o

We now have an asymptotic representation of H(z,y, q)
as a genuine Laplace-type integral

/e%g(z)f(z)dz
C



Saddle point analysis

To analyse the saddle point structure of

/ ez9(%) f(z)dz
C
consider

9(z) = log(z)log(x) + Liz(2z) — Liz (y/2)
There are two saddle points are the zeros z; 3 = 2z, & Vd
of
(z—1(z—y)+2zx=0
and we find coalescent saddles as d changes sign.

Reparametrizing locally by a cubic

1
9(z) = §u3 —au+ B with u = £a/% «— 2 = 21 4

determines o and 3

2 2
g(z1) = —§a3/2 + B g(z2) = §a3/2 + B

The transformation is one-to-one and analytic in a
neighbourhood of d = 0.



We proceed with the analysis of

/e%g(z)f(z)dz
C

by expanding

FO) 3o = om + ) = )"

Denoting the image of C as C’ and writing

1
V()\) _ _/ eu3/3—)\udu

271

we get the asymptotic expansion

6. @)

e PleI(e;d) ~ 51/3V(a5_2/3)2am5m

m=0

+ 23V (ae™2/3) mee

V(A) is expressible using Ai()), depending on the

contour C’.

Explicit formulas for the coefficients a9 = pg and by = qo

of the leading order terms are

2041/2
+9"(21,2)

po + goat/? = f(Z1,2)\/



Applying this method leads to our main technical result.

Lemma 6 Let 0 < xz,y<1andg=e ¢ fore > 0. Then

H(z,y,q) = {po€1/3Ai(aa_2/3) i CI082/3Ai’(ozs_2/3)}

L Lia (y)— % +log(z) log(y) /2 } 2T 10

xe \/5(1_y>{ +0(e)}
where

4 3/2 zm—\/E . .

-’ = log(zx) lo +2L1 zm—\/a —211 zm—l—\/a
507/% = Tog(a) log 242y (2 —Vd) ~2Lia (2 +V)
with

1 _
zl,gzzmzl:\/g 2, = +g a and d:zfn—y

o\ 1/4 d\ 4
pO:<E> (1—£C—y), %Z(a) .

Proof: coalescing saddle point asymptotics m

and



Asymptotics for Staircase Polygons

Theorem 2 (Prellberg(1995)) Let 0 < z,y < 1 and
g=e ¢ fore>0. Then

G(z,y,q) =
1—z— 1—z—y)2 Ai'(oe2/3
z y+\/( T —y) 2y _1(046. )_
2 4 al/2¢e 1/3A1(a5 2/3)
x {1+ O(e)}
where
4 3/2 Zm_\/g . .
—a”’* =log(z)lo +2L1 zm—\/a —2L1 zm—|—\/3
307/% = Tog(a) log 2 +2Lia (e —Vl)~2Lio Vi
and
1 _
zl,gzzmzl:\/a, Zm = Ty and d:zfn—y.

2
Proof: We recall

B H(q2x7qy7 Q)
G(z,y,9) =y ( H(qz,qy,q) 1

Using Lemma 6, we arrive at an asymptotic expression

of the form
p61)51/3Ai(a5_2/3) + q61)52/3Ai’(a5_2/3)
p(()2)51/3Ai(a5—2/3) + q(()2)52/3Ai'(a5—2/3) 7

and all that is left is to determine the coeflicients. =




Summary and Outlook

Statistical mechanics of vesicle models
Phase diagram, tricritical scaling
Solvable models, functional equations

Asymptotic analysis via

— g-functional equation

— @-series solution

— contour integral

— saddle-point analysis

Can one do the asymptotics without solving the
functional equation?

— Achieved for some g-linear equations (Richard
and Guttmann 2001)

— Unsolved for g-algebraic equations
Some heuristic results (Richard, 2002)

There are indications that the unrestricted vesicle
problem also involves the Airy function as scaling
function (Cardy 2001; Richard, Guttmann and
Jensen 2001)



