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Abstract

Newton’s iteration has quadratic convergence for simple roots. We present a Newton-based
iteration scheme with quadratic convergence for multiple roots of systems of analytic func-
tions. This is a report on work in progress.

1. Newton Iteration, Approximate Roots and γ-Theorems

1.1. Newton Iteration. Let f : Cn → Cn be an analytic function. Newton’s method for solv-
ing f = 0 consists in approximating f by its linearization at a given point z, whence the equation

(1) f(z) + f ′(z)(y − z) = 0

from where solving for y yields the following iteration

(2) zk+1 = Nf (zk) := zk − f ′(zk)−1f(zk).

For this method to converge to a root ζ, it is necessary that f ′(ζ) be invertible. The exact domain
from where the iteration converges to a solution can have a very complicated fractal structure.
However, convergence is usually very fast provided the initial point z0 be chosen sufficiently close
to ζ. This is made more precise in the following [1, Ch. 8].

Theorem 1 (Smale). Let f be analytic and

γ(f, z) := sup
k>1

(∥∥f ′(z)−1f (k)(z)
∥∥

k!

) 1
k−1

.

If f(ζ) = 0 and f ′(ζ)−1 exists then for any z such that ‖z− ζ‖ ≤ (3−
√

7)/
(
2γ(f, ζ)

)
, the sequence

defined by z0 = z and (2) is well defined and satisfies

(3) ‖zk − ζ‖ ≤
‖z − ζ‖
22k−1

, k ≥ 0.

Thus, there is a ball around the root such that starting with any point inside this ball, each step
of Newton’s iteration decreases the distance to the root quadratically.

An important property of γ in Theorem 1 is that it is actually invariant under unitary changes
of coordinates, thus it is related to geometry rather than computation.

Proof. This is the only proof we give in detail. It gives a good idea of the principle of most of the
other proofs in this summary.
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All the necessary quantities are first expressed in terms of the Taylor coefficients of f at ζ by
means of Taylor expansion of f and f ′ inside (2):

Nf (z)− ζ = f ′(z)−1
(
f ′(z)(z − ζ)− f(z)

)
= f ′(z)−1f ′(ζ)

∑
k≥1

(k − 1)f ′(ζ)−1 f
(k)(ζ)
k!

(z − ζ)k.

Set u = γ(f, ζ)‖z − ζ‖, then provided u < 1, the norm of the sum above is bounded by ‖z − ζ‖ ×(
(1 − u)−2 − (1 − u)−1

)
. The norm of the remaining product is bounded by considering first its

inverse, again via a Taylor expansion: f ′(ζ)−1f ′(z) = 1 + B, with ‖B‖ ≤ (1 − u)−2 − 1, provided
again that u < 1. Now if ‖B‖ itself is smaller than 1 (i.e., u <

(
5−
√

17
)
/4 ≈ .2192), the norm of

the inverse can be bounded by the geometric series and this leads to
∥∥Nf (z)− ζ

∥∥ ≤ ∥∥z− ζ∥∥u/ψ(u)
where ψ(u) = 1 − 4u + 2u2. Thus the Newton iteration converges as soon as u < ψ(u), i.e.,
u <

(
5−
√

17
)
/4 and the conclusion of the theorem follows from considering u < ψ(u)/2. �

A simple corollary of the end of this proof is that two distinct roots ζ and ζ ′ are at distance at
least

(
5−
√

17
)
/
(
4γ(f, ζ)

)
. This last result has been strengthened by Dedieu [2], who obtained 1/2

instead of .2192 (see below for a proof). Theorem 1 is the basis for the following.

Definition 1. An approximate root of f(z) = 0 is a point such that the sequence defined by z0 = z
and (2) is well defined and satisfies (3).

Although the results in Theorem 1 are stated in terms of quantities evaluated at the root, similar
manipulations of Taylor expansions lead to variants in terms of quantities evaluated at the current
iterate, on which tests can be based [1, Section 8.2].

1.2. Homotopy. A remaining problem is to locate approximate solutions.
In the univariate case, this can be achieved by starting from sufficiently many initial points [5].
Another method, which works also in the multivariate case, starts from the map ft : [ 0, 1 ]×Cn →

Cn defined by ft(x) = f(x) − tf(x0). For t = 1 a root x0 is known and then one “follows” the
curve from (1, x0) to (0, x) where x is a root of f . The idea is to partition [ 0, 1 ] into t0 = 1 >
t1 > · · · > tk = 0 and then apply only one Newton iteration at each ti: z0 = x0, zi+1 = Nfti+1

(zi),
for i = 0, . . . , k − 1. The complexity of this method is related to how small k can be made. This
in turn is eventually related to the so-called fiber distance of the system along this curve to the
discriminant variety (see [1]).

2. Multiple Roots and Clusters in the Univariate Case

Numerically, there is no difference between multiple roots and clusters of roots. Also, the scale
of the problem is the only difference between clusters of roots and well-separated roots. Thus,
it is important to find an algorithm converging efficiently to clusters of roots. After a cluster
has been isolated, either the computation stops and outputs a ball containing the cluster and the
number of its elements, or the scaling is refined and the method is applied recursively to converge
to each of the roots or subclusters. It turns out that this is possible by exploiting the fact that
Newton’s iteration does not converge quadratically to multiple roots. We now review the properties
of Newton’s method leading to an algorithm [7].

2.1. Multiplicity and Speed of Convergence. If ζ is a root of multiplicity m of f , then in the
neighbourhood of ζ, one has

f(z) ∼ f (m)(ζ)
(z − ζ)m

m!
, f ′(z) ∼ f (m)(ζ)

(z − ζ)m−1

(m− 1)!
.



J.-C. Yakoubsohn, summary by B. Salvy 51

From there it follows that if m > 1, the speed of convergence gives information on the value of m:

(4) Nf (z)− ζ = (z − ζ)− f(z)
f ′(z)

∼
(

1− 1
m

)
(z − ζ).

Another consequence of this estimate is that in the neighbourhood of ζ, the Newton sequence is
close to a straight line.

2.2. Algorithm. The idea is to use these properties in three steps: (i) compute three iterates
x0, x1, x2 and use them to estimate m in view of (x2 − x1)/(x1 − x0) ∼ 1 − 1/m; (ii) use this
value of m to “jump” directly to a better approximation of ζ using (4); (iii) control whether this
approximation lies in the center of a cluster of m roots using a posteriori bounds; if so return the
approximation and a radius of a ball containing the cluster, otherwise compute a new iterate x3

and start again.

2.3. A Posteriori Bounds. Recall that Rouché’s theorem states that if
∣∣f(x) − g(x)

∣∣ < ∣∣g(x)∣∣
on a circle |x − z| = r, then f and g have the same number of zeroes (counted with multiplicity)
in the disk with centre z and radius r. Bounds are obtained by considering g defined by g(x) =∑

k≥m f (k)(z)(z − x)k/k!. If f (m)(z) 6= 0, this polynomial has a zero of multiplicity m at z and
does not have any other root in a disc of radius at least R = 1/2γm(f, z), where

γm(f, z) := sup
k>m

∣∣∣∣∣m!f (k)(z)
k!f (m)(z)

∣∣∣∣∣
1

k−m

.

This is proved by evaluating f at another zero w using the Taylor expansion of f at z: from f(w) = 0
we get

f (m)(z)
m!

(w − z)m =
∑
k>m

f (k)(z)
k!

(w − z)k.

Then using the triangular inequality and the definition of γm yields the result.
The next step is to find a radius r ≤ R such that |f − g| < |g| on the corresponding circle.

Rewriting this using the triangular inequality leads to the following.

Theorem 2 (Yakoubsohn). Let z ∈ C and 0 < r < 1/2γm(f, z) be such that

|f (m)(z)|
m!

rm −
∑
k 6=m

|f (k)(z)|
k!

rk > 0,

then f contains m roots counted with multiplicity in the disk of centre z and radius r.

2.4. Homotopy. In the same way as in the case of simple roots, it is possible to combine these
ideas with a homotopy method to extend the domain of application of this algorithm. A discussion
of a way to find an appropriate subdivision 1 = t0 > · · · > tk = 0 can be found in [7], together with
a complexity analysis.

3. Moore–Penrose Inverse

When the number of variables is different from the number of equations, or more generally
when f ′(z) in (1) is not an isomorphism, Newton’s iteration (2) does not apply. It turns out that
a simple modification of this iteration gives a process with interesting fixed points both in the
underdetermined and overdetermined case. In the underdetermined case, the fixed points are the
points of the variety defined by f , while in the overdetermined case, the fixed points are solutions
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of the least-square problem associated with the equations. This is achieved by means of the Moore–
Penrose inverse. Let A be a linear operator between two Euclidean or Hermitian spaces E and F .
The Moore–Penrose inverse A† of A is defined as A† = ιB−1πIm a, where πIm a is the orthogonal
projection on the image ImA of A, B is the restriction B of A to the orthogonal of its kernel, and
ι is the injection of this orthogonal to A. It satisfies A†A = π(Ker A)⊥ , AA† = πIm A.

With this inverse, the Newton iteration can be generalized to the Newton–Gauss iteration:

(5) zk+1 = Nf (zk) := zk − f ′(zk)†f(zk).

The convergence properties of this iteration are expressed in terms of

γ†(f, z) := sup
k>1

(∥∥f ′(z)†f (k)(z)
∥∥

k!

) 1
k−1

.

The result is parallel to Theorem 1, d denotes the distance.

Theorem 3 (Shub–Smale, Dedieu–Shub). Let V be the zero-set of f and ζ ∈ V . If f ′(ζ) is
surjective, then for any z such that |z − ζ| ≤ c/γ†(f, ζ), the sequence defined by z0 = z and (5) is
well defined and satisfies d(zk, V ) ≤ d(z, V )/22k−1, for k ≥ 0. Moreover, the sequence converges to
a point Z ∈ V such that d(z, V ) ≤ d(z, Z) ≤ 2d(z, V ).

In this theorem, c is a universal constant that does not depend on f .
Fixed points of the Newton–Gauss iteration in the overdetermined case are not necessarily at-

tractive. A similar constant γ can be defined, but this time the convergence (to a solution of the
least-square problem F ′(x) = 0 where F (x) =

∥∥f(x)
∥∥2) is not quadratic anymore, see [3].

4. Fast Deflation

The results above do not apply in cases with multiple roots, or clusters of roots. In a slightly
different context, that of finding series solutions of polynomial systems, G. Lecerf has devised in [6]
an algorithm based on a Newton iteration with low complexity and quadratic convergence even
in presence of multiplicities. We now give an outline of this algorithm and then sketch how this
algorithm is adapted to the Archimedean world. To simplify notations, all series expansions are
performed at the origin.

4.1. Deflated System. Let f be a system of n polynomial equations in n variables x1, . . . , xn hav-
ing a finite number of solutions. To simplify the description, we assume some genericity conditions
to be satisfied. The algorithm proceeds recursively by constructing an auxiliary block-triangular
non-linear system (the deflated system). In each block, a subset of the variables xi, xi+1, . . . , xi+ri−1

can be solved for in terms of the remaining ones xi+ri , . . . , xn by means of a Newton iteration with
quadratic convergence. At the end, it is therefore sufficient to solve these systems starting from
the last one to get a solution of the original polynomial system.

The recursive step of this construction starts by computing the valuation of xi (the first inde-
terminate which does not belong to one of the blocks constructed so far) in all the given equations.
Let mi be the smallest of these valuations. When computing series at a multiple root, mi > 1
for i > 1 and the product of these mi’s is bounded by the multiplicity.

The equations are then differentiated j times with respect to xi, for j = 1, . . . ,mi − 1. A rect-
angular system Φi is formed with the original equations and these new equations. A subsystem Ωi

is then extracted, whose Jacobian has maximal possible rank ri. By construction, Ωi makes it
possible to compute xi, . . . , xi+ri−1 by a Newton iteration with quadratic convergence, given values
for the next variables. The next step is then started with Φi and the remaining variables as input.
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4.2. Series Expansions and Complexity. Differentiation is needed at several stages during the
algorithm: first when computing the systems Φi and then when performing Newton iterations on
the systems Ωi. However, the equations to be differentiated involve quantities that are known only
implicitly as solutions of previous systems.

A way of computing the necessary derivatives is to compute multivariate series expansions at
each stage. This means that each of the systems Ωi is solved by a Newton iteration that converges
both to the values and to the series expansions out of which extracting coefficients yields the values
of the desired derivatives.

The nontrivial proof that this method leads to a correct algorithm with good complexity prop-
erties can be found in [6].

4.3. Towards a Numerical Fast Deflation. The idea of this work [4] is to follow the same steps
as in Lecerf’s algorithm, using numerical tools at intermediate steps.

The computation of valuations in series is replaced by the computation of multiplicity by the
algorithm of Section 2.2. Because some of the variables are expressed as solutions of previous Ωi’s,
the equations are not polynomial anymore. The idea is to work as if they were polynomial, using
the Weierstrass preparation theorem to compute the required bounds. The computation of the
rank is performed, for instance, by an LU-decomposition with a proper threshold to erase smaller
diagonal entries. The computation of series is performed as in the symbolic case, with floating
point coefficients that are themselves found by the Newton iteration.

What remains then is a rigorous analysis of how the convergence of this method and its quadratic
behaviour can be related to the geometry of the problem via analogues of the γ-functions used in
the theorems presented here. This will be treated in [4].

4.4. Example. We treat in detail a system borrowed from [6]: f = g = h = 0, with

f = 2x+2x2+2y+2y2+z2−1, g = (x+y−z−1)3−x3, h = (2x3+5y2+10z+5z2+5)3−1000x5.

This system has a solution of multiplicity 18 at (0, 0,−1).
The computation begins with initial point (.2, .1,−.98). Setting y = .1, z = −.98 in the system

and using the algorithm of Section 2.2 reveals that .2 is close to a simple root for x, in the first
equation only. Thus no differentiation is needed at this stage and the first block of the final system
is f = 0. This defines a function X(y, z) that can be computed by Newton iteration, as well as its
Taylor expansion. The next step considers the remaining equations at z = −.98, x being replaced
by X(y,−.98). Applying the same technique shows that .1 is close to a root of multiplicity 3 for
y in g and 5 in h. Thus the second block of the final system is formed by ∂2g/∂y2

(
X(y, z), y, z

)
which defines a function Y (z) that can be computed by Newton iteration, together with its Taylor
expansion. Finally, H(z) = ∂2h/∂y2

(
X(Y (z), z), Y (z), z

)
is found to have a root with multiplicity 4

for z close to −.98. This yields the last block of the system: H(3)(z) = 0. Note that the product of
the multiplicities that have been found—1× 3× 4 = 12—is smaller than the actual multiplicity 18.

One iteration of the algorithm on the system consists, for each of the blocks, in performing
several Newton iterations to compute sufficiently many terms of the series expansion. After each
such Newton iteration, the previous coordinates are updated using the derivatives of their series.

Thus, we start with f which we evaluate at x = .2 + dx, y = .1 + dy, z = −.98 + dz. This yields

S(dx, dy, dz) = (.6604 + 2.4dy − 1.96dz + 2d2
y + d2

z) + 2.8dx.

From there, the derivative with respect to x is obtained as the coefficient of dx and we get as a
result of the Newton iteration

X = .2− S(0, dy, dz)/(∂S/∂dx) = −.0358571 + .7dz − .3571428d2
z − .8571429dy − .7142857d2

y.
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Iterating again twice with f(X + dx, .1 + dy,−.98 + dz) yields

X = −.10022540 + 1.2248159dz − 2.4860889d2
z + · · ·+O(d4

y + d5
z).

We now turn to the second block of the deflated system, ∂2g/∂y2
(
X(y, z), y, z

)
. To perform a

Newton iteration on this block, g is first evaluated at X, .1 + dy,−.98 + dz and then differentiated
twice with respect to dy. This yields

S(dy, dz) = 1.5559281− 31.251336dz + 269.81555d2
z − 1962.5419d3

z + 13304.819d4
z

+ (42.453768− 708.11523dz + 7291.0178d2
z − 63814.277d3

z + 506494.98d4
z)dy +O(d2

y + d5
z).

From there a Newton iteration yields

Y = .063350059 + .12481705dz + 2.0206612d2
z + 3.4053518d3

z + 21.246801d4
z +O(d5

z).

This value is then used to update the estimate X obtained at the previous stage, via

Xnew := Xold + ∂X/∂dy(Ynew − Yold).

The new estimate, X = −.045258749 + .87056807dz − 4.1178532d2
z + · · ·+O(d4

y + d5
z), is then used

together with Y to perform another Newton iteration on this block, and another update of X.
The treatment of the last block is similar. The only novelty is that the second derivative of h with

respect to y has to be computed. This is achieved by evaluating h at X(dy, dz), Y (dz)+dy,−.98+dz,
and extracting the coefficient of d2

y. Then, differentiating three times with respect to dz yields

S = 1673.8759 + 59921.515dz +O(d2
z),

from which one Newton iteration gives Z = −1.0079345 and updating the previous coordinates

X = −.0020677183 + .069477760dz + .44632326d2
z + · · ·+O(d4

y + d5
z),

Y = .0023005230 + .85445586dz − 1.2958872d2
z + 36.553123d3

z − 250.55237d4
z +O(d5

z).

In brief, this iteration of the algorithm has led from (.2, .1,−.98) to (−.0021, .0023,−1.008), from
distance .2 to distance 8 10−2 to the root. Similarly, the next iterations are respectively at distance
of order 8 10−4, 6 10−6, 3 10−9, 6 10−18 and 2 10−36 from the root, thus exhibiting a clearly quadratic
behaviour after the first few iterations.
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