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Abstract
We investigate here the complexity of different computational problems related to linear
algebra, under several models. We see how these complexities are related to each other, and
how in most cases they can be shown to be very closely related to the compexity of matrix
multiplication.

1. Introduction

Most algorithms advertised here are of probabilistic nature, and the reader must be aware of
this fact. More precisely, no distinction will be made between Monte Carlo- or Las Vegas-type
probabilistic algorithms. Our major concern is that these algorithms are usable in practice (imple-
mentations have been made for most of them). When comparing algorithms, we are only interested
in the major contribution to the complexity. We shall ignore constants as well as logarithmic factors
in complexity estimates. The notation O (̃x) will be used to reflect this consideration. Furthermore,
the use of fast Fourier transform arithmetic is always assumed when applicable.

1.1. Definitions. We fix notation for the complexities of different computations that can be done
on matrices of size n over a domain R (which will be either a Euclidean domain or a finite field),
where the meaning of “complexity” depends on the computational model that will be chosen
later on:

– DET(n): computing the determinant of a matrix of size n;
– INV(n): computing the inverse (when it exists) of a matrix of size n;
– LINSYS(n): solving a linear system of n equations with n unknowns;
– MM(n): multiplying two matrices of size n.

As the complexity for multiplying two matrices expressed in terms of arithmetic operations is
crucial to many respects, it will appear in several places. We will use w for the exponent associated
to this problem. Currently, the algorithm of Coppersmith–Winograd for matrix multiplication has
the lowest aymptotical estimate, O

(
nw
)

with w ≈ 2.38.

2. Classical Complexity Results under Different Models

2.1. Algebraic model. Here we assume that R is a field (therefore division is possible) and we
express complexities in terms of arithmetic operations in R. The following facts are known:

Proposition 1 (Strassen, 1969). DET(n) ≺ MM(n) and LINSYS(n) ≺ MM(n).

Proposition 2 (Strassen, 1973, Baur & Strassen, 1983). MM(n) ≺ DET(n).
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An easy consequence of this fact is that under the arithmetic model, the complexities of DET
and MM are the same. Using the asymptotically fastest matrix multiplication algorithms, a com-
plexity of nw is therefore possible. Furthermore, the results above also imply that LINSYS(n) can
be solved in at most the same complexity. It is not known, however, whether one can do better
than nw for LINSYS(n), and this has been an open problem for soon thirty years.

2.2. Bit complexity. All bit operations are equally counted under that model. For instance,
this is the relevant model when computations are carried over the integers. The size of the input
becomes important beyond the only consideration of the dimension of the matrix. The length of
the coefficients is important too, therefore we introduce ‖A‖, the norm of A, as the biggest of
its coefficients (in absolute value). The determinant of an n × n matrix A is an integer of size
O
(
n log ‖A‖

)
and can be computed in time:

DET(n) = O
(̃
nw+1 log ‖A‖

)
.

The above complexity result is obtained by using the Chinese remainder theorem: the result is
evaluated modulo a sufficiently large set of primes, and then recovered by interpolation.

As for linear systems, we have a much better result, since LINSYS(n) can be solved in complexity
O
(̃
nw log2 ‖A‖

)
using p-adic (Hensel) lifting. This result is extensively explained in Storjohann’s

thesis [6] as well as in [7].

2.3. Division-free complexity. The complexity results given in the algebraic model above as-
sume that division is allowed and the results of Strassen quoted above do make use of this fact.
What happens if we remove the possibility of computing inverses? For instance, if R is a Euclidean
domain and not a field, inverses cannot be computed whereas the determinant is well-defined.

The following trick might help to carry the results concerning the arithmetic model to the
division-free model, with an impact on the complexity. Suppose for instance that we want to
compute the determinant of the matrix A over the domain R. The idea is to work in R[[u]] (the
ring of formal power series over R), setting B(u) = I+u(A−I). Therefore B(0) = I and B(1) = A.
The computation of the determinant of B using the recursive factorization algorithm of Strassen is
possible, and requires only the computation of inverses of elements in 1 + uR[[u]]. Since

1
1− z

= 1 + z + z2 + . . . = (1 + z)(1 + z2)(1 + z4) . . . ,

it is possible to compute this quantity without inverting elements of R. Since the result obtained is
necessarily a polynomial in R[u] of degree n, we can afford to carry computations only modulo un+1.
Final evaluation of this polynomial at u = 1 yields detA. The consequence of this is that we obtain
a complexity of O

(̃
nw+1

)
for computing a determinant in the division-free model.

2.4. Black-box (sparse) complexity. We say that we do black-box computations with a given
matrix when no investigation is made on the inner structure of the matrix and the matrix is merely
used in one single operation: multiplication by a vector. In theory, this operation requires O

(
n2
)

multiplications, but when the matrix has the property of being sparse (as few as O(log n) non-zero
coefficients per row), then the cost can be for instance O (̃n).

Under this model, the computation of the determinant or the characteristic polynomial is done
in O

(̃
nw
)
, which is no better than the arithmetic complexity. However, the computation of the

minimal polynomial, and therefore the solution of a linear system, can be obtained much more effi-
ciently. Algorithms gathered under the name of “Krylov subspace techniques” are quite successful
for this purpose. The Lanczos algorithm can be regarded as the Gram–Schmidt process for finding
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a self-orthogonal vector. The Wiedemann algorithm is another method that can be quickly de-
scribed. Choose two random vectors u and v. Then compute the minimum generating polynomial
of the scalar sequence vTu, vTAu, . . . , vTAku, . . . With high probability (on u, v, and A), this
polynomial is also the minimum polynomial of the sequence I, A, . . . , Ak, . . . , which is also the
minimum polynomial of A. Since the minimum generating polynomial of a scalar sequence can be
computed in time O

(
n2
)

using the Berlekamp–Massey algorithm, using the first 2n coefficients of
the sequence, it follows that the minimum polynomial can be computed in time O

(̃
n2
)
.

We will see later that in fact the relative easiness of the computation of the minimum polynomial
can be well understood in terms of the invariant factors of the matrix, of which the minimum
polynomial is the biggest, while the characteristic polynomial is their product.

2.5. Overview of classical costs. If we summarize these results, focusing only on the dominating
term and taking the size of the inputs constant, we obtain:

Arithmetic Division free Binary Sparse
LINSYS nw – nw n2

DET nw nw+1 nw+1 nw

3. Recent Progress (2000–2002)

Recent works in the field have contributed to the following improvements:

Division free Binary (general) Binary (polynomial) Sparse
LINSYS – nw nwd n2

nw+1 nw+1 nw+1d nw

DET ↓ ↓ ↓ ↓
n2.698 nw n3d (INV) n2.25

[4, 5] [2, 4, 7] [3] [8, 10]

Two examples will be presented here.

3.1. Computing the inverse of a polynomial matrix. Given a polynomial n × n matrix A
of degree d over a field K, we present here an algorithm that computes the inverse of A in time
O (̃n3d), which is in fact the size of the output.

It should be noted that a closely related result has been obtained recently by Storjohann [7],
who shows that the determinant of A can be computed in time O

(̃
nwd

)
. It is not known, however,

whether the computation of the inverse reduces to the computation of the determinant. On the
other hand, our algorithm can be derived to obtain another method for computing the determinant
(although not as efficient as Storjohann’s).

The polynomial inverse computation algorithm described here is a block divide-and-conquer
procedure. If the input matrix has the form

(
A B
C D

)
, assuming that the input is generic, we proceed

through the following steps for computing the left inverse of the matrix:
1. Compute cofactors U(X) and V (X) such that the equality U(X)A(X) + V (X)C(X) = 0

holds. This can be achieved by a matrix Euclidean algorithm, using [1] or [9] for instance, in
time O (̃n3d). With generic input, the degrees of U(X) and V (X) are less than or equal to d.

2. Similarly, obtain cofactors S(X) and T (X) such that we have S(X)B(X)+T (X)D(X) = 0.
3. Multiply the input matrix on the left by

(
S T
U V

)
. The resulting matrix is block-diagonal, and

the blocks have degree 2d at most.
4. Compute the inverse of the blocks on the diagonal recursively.
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All of these steps can be performed in time O (̃n3d). There are two recursive calls for the
inversion of matrices on the diagonal. These are inverses of n

2 ×
n
2 matrices of degree 2d. The

resulting complexity can therefore easily be shown to be equal to O (̃n3d).
We have assumed that the degrees of U(X) and V (X) were balanced, which is true for most

inputs, but might fail for some particular matrices. In such a case, it is possible to precondition
(multiply on the left by some matrix whose inverse is known) the input matrix so that the required
conditions are met.

3.2. Computing the characteristic polynomial and invariant factors of a sparse matrix.
If A is a sparse matrix, we have seen already that its minimal polynomial can be easily computed in
time O

(̃
n2
)
. Using this, we will now see that much more can be obtained. We define the invariant

factors of A (denoted f1, . . . , fn) to be the coefficients of the diagonal on the Smith normal form
S(X) of the polynomial matrix A−XI. Recall that the Smith normal form is the unique diagonal
matrix such that S(X) = U(X)(A − XI)V (X), where U and V have determinant 1, and the
coefficients on the diagonal divide each other.

Obviously, the characteristic polynomial of A is the product of its invariant factors. Since these
invariant factors divide each other, it is easy to see that at most

√
n of them are distinct. We show

that it is possible to discover the chain of distinct invariant factors and their multiplicities by a
divide-and-conquer procedure, with at most O

(√
n
)

computations of individual invariant factors.
The crux of this algorithm is the ability to compute fk just as easily as we are already able to find
the minimal polynomial fn. To achieve this, we simply compute the gcd of fn with the minimal
polynomials of A+B, where B is a matrix of rank n−k. This gives the desired result. The matrix B
can even be chosen to be a product of two Toeplitz matrices, which eases the computations. The
design of the recursive discovery procedure is then straightforward. This yields a total complexity
of O

(̃
n2.5

)
. The latter can be lowered to O

(̃
n2.25

)
using block techniques.
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2002. Université de Lille, Lille, France). pp. 246–254. – ACM Press, New York, . Conference proceedings.

[8] Storjohann (Arne) and Villard (Gilles). – Computing the characteristic polynomial of a sparse matrix. – .
In preparation.
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