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Abstract
Transseries are series defined using exponential and logarithmic variables. They were first
introduced to describe very general types of strongly monotonic asymptotic behaviour. The
functions that are considered do not present any oscillatory phenomenon. An algorithm
is presented that computes transseries solutions of algebraic differential equations with
transseries coefficients.

1. Introduction to Transseries

1.1. Well-ordered and grid-based transseries. The transseries are a generalization of the usual
formal power series, allowing the recursive introduction of exponential and logarithmic variables
(see [1] or [3] and references).

Example. The following series are transseries:
– 1 + x−1 + x−2 + x−e + x−3 + x−e−1 + · · · = 1

1−x−1−x−e ,

– 1 + 1
x + 1

x2 + · · ·+ e−x + e−x

x + · · ·+ e−2x + · · · ,
– 1

x + 1
x2 +· · ·+ 1

elog2 x
+ 1

e2 log2 x
+· · ·+ 1

elog4 x
+ 1

e2 log4 x
+· · · solution of f(x) = 1

x +f(x2)+f(elog
2 x),

– 1 + 2−x + 3−x + 4−x + · · · ,
– x−1 + x−π + x−π2

+ x−π3
+ · · · ,

– x+
√
x+

√√
x+

√√√
x+ · · · ,

– ee
x+ ex

x
+ ex

x2 +··· + x−1ee
x+ ex

x
+ ex

x2 +··· + · · · ,
– Γ(x− π) + log Γ(eΓ(x2))xxxx

,

– e
√

x+e
√

log x+e
√

log log x+···
.

An ordered ring is a ring A, together with an order ≤ which is compatible with the ring structure.
This means that: (i) (x ≤ y and x′ ≤ y′)⇒ x+x′ ≤ y+y′, (ii) 0 ≤ 1, and (iii) (0 ≤ x and 0 ≤ y)⇒
0 ≤ xy. The absolute value |x| of x ∈ A is defined by |x| = x if x ≥ 0 and −x otherwise. One
writes x ≺ y if |λx| ≤ |µy| for some µ ∈ A and all λ ∈ A and one says that x is negligible with
respect to y.

More generally, let C be a constant field with a total order (i.e., either α = β or α < β or α > β
for all α and β in C—see [7]) and M be a group with a total order <. A well-ordered transseries
is a mapping f : M → C with well-ordered support (this means that every nonempty subset of
the support of f has a least element—see [7]). The elements of C are called coefficients and the
elements of M are monomials. If f =

∑
m∈M fmm is a well-ordered transseries and m ∈ M then
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one says that fm is the coefficient of m in f and fmm is a term occurring in f . Since the support
of f is well-ordered, it admits a maximal element df which is called the dominant monomial. If
f = cfdf (1 + δf ) then cfdf is the leading term of f and one denotes that f 4 g if and only if
df 4 dg. One decomposes

f = f↑ + f= + f↓

with
f↑ =

∑
m�1

fmm, f= = f1, f↓ =
∑
m≺1

fmm.

One focuses on particular transseries:

Definition 1. A series f is grid-based if there are m1, . . . ,mk ≺ 1 and n ∈M such that

supp f ⊂ {m1, . . . ,mk}∗n

One denotes by C[[M]] the set of mappings from M to C with grid-based support and one calls
it the set of grid-based transseries. One remarks that C[[M]] 6= C[[M]].

Example. If f = x2 + x+ 1 + x−1 + · · · then supp f ⊆ {x−1}∗x2

The field of the grid-based transseries in x over C is denoted by T and is stable under derivation,
composition and functional inversion as proved in [3]. Ways to construct T are presented in [3].

1.2. Transbasis.

Definition 2. An ordered set of transseries B = (b1, . . . , bn) is a transbasis if the following condi-
tions are satisfied:

1. b1 is an iterated logarithm or exponential: b1 = expl x for some l ∈ Z (l is the level of the
transbasis);

2. 1 ≺ b1 ≺ · · · ≺ bn;
3. bi ∈ expC[[b1, . . . , bi−1]] for i > 1.

Example. The sets B1 = {x−1, e−x, e−x2
, e−x3} and B2 = {log−1 x, x−1, e− log2 x, e−x, e−ex/(1+x−1)}

are transbasis but B3 = {x−1, e−x+e−x} is not because e−x+e−x
is not in expC[[x−1]].

One says that a transseries f can be expanded with respect to B if f ∈ C[[b1, . . . , bn]]. Equiva-
lently, one says that B is a transbasis for f .

Example. log(x+ e
−x2

1−x−1 ) ∈ C[[log x;x; ex
2+x]] and then B = {log x;x; ex

2+x} is a transbasis for f .

For any f ∈ C[[b1, . . . , bn]], one can recursively expand f : f =
∑

αn
fαnbαn

n where fαn =∑
αn−1

fαn,αn−1b
αn−1

n−1 , where. . . , where fαn,...,α2 =
∑

α1
fαn,...,α1b

α1
1 .

Theorem 1. Let f be a transseries and let B0 be a transbasis. Then there exists a transbasis B
for f which contains B0.

1.3. Differentiation and shifting. Right compositions by exp (resp. log) are referred to by
upward shifting (resp. downward shifting). The upward (resp. downward) shifting of f ∈ T is
denoted by f ◦ exp = f↑ (resp. f ◦ log = f↓). One observes that ↑ and ↓ are scale changes which
preserve the set of transmonomials. Note that f↑ 6= f↑ and f↓ 6= f↓. These compositions are used
to consider transbasis starting with level one (b1 = x) which is particularly useful for differential
calculus (see below).
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1.4. A conjecture of Hardy. In [2] a conjecture states that the functional inverse of log x log log x
is not equivalent to any exp-log function over R for x→∞. Theorem 1.2 of [3] illustrate the interest
of transseries by a proof of this conjecture.

2. Differential Algebraic Polynomials

Let P =
∑

d Pd be a differential algebraic polynomial where

Pd =
∑

i0+···+ir=d

Pi0,...,irf
i0 . . . f (r)ir .

One defines:

– the degree of P , degP = max { i0 + · · ·+ ir | Pi0,...,ir 6= 0 },
– the additive conjugate, P+h(f) = P (f + h),
– the multiplicative conjugate, P×h(f) = P (fh),
– the upward shifting, P↑(f↑) = P (f)↑,
– the dominant monomial, dP = max { dPi0,...,ir

| dPi0,...,ir
6= 0 },

– the dominant coefficient , DP =
∑

i0,...,ir
Pi0,...,ir,dP c

i0 . . . c(r)
ir , where c is a variable.

2.1. Differential Newton polynomials. One now describes an algorithm for the resolution of
algebraic differential equations with transseries coefficients like

P (f) = 0 (f < v)(1)

where P ∈ T[f, f ′, . . . , f (r)] is a differential polynomial with transseries coefficients and v ∈ M a
transmonomial. The first step is to construct an analogue of the Newton polygon and polynomial
method in this setting, enabling us to compute the successive terms of solutions one by one.

The following theorem shows how DP looks like after sufficiently many upward shifting.

Theorem 2. There exist an integer k ≤ deg(P ) and a polynomial NP depending only on the
variables c and c′ such that for any l ≥ k, DP↑l

= NP .

Example. If one considers P = ff ′′ − f ′2 and one denotes f̃(x) = f↑ = f(ex) then one has f̃ ′(x) =
exf ′(ex) and f̃ ′′(x) = exf ′(ex) + e2xf ′′(ex). This implies that f(ex) = f̃(x), f ′(ex) = e−xf̃ ′(x),
f ′′(ex) = e−2x

(
f̃ ′′(x)− f̃ ′(x)

)
and P (f)↑ = e−2x

(
f̃ f̃ ′′ − f̃ f̃ ′ − f̃ ′2

)
= P↑(f̃) = P↑(f↑). So one

deduces that

P↑ = e−2x
(
ff ′′ − ff ′ − f ′2

)
.

Using the same method, one finds that P↑↑ = e−2ex−x(ff ′) + e−2ex−2x(ff ′′ − ff ′ − f ′2). This
implies that NP = cc′.

NP is the differential Newton polynomial of P . More generally, given a monomial m, NP×m is
the differential Newton polynomial of P associated to m. The Newton degree of (1) is the largest
possible degree of NP×m for all the monomials m ≺ v. In the algebraic case, the Newton degree
measures the number of solutions to the asymptotic equation when counting with multiplicities. In
the differential case, it only gives a lower bound (see Theorem 1 of [6]). Also, an equation of degree
zero does not admit any solutions.
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2.2. Potential dominant monomials of solutions. One is now interested by the le ading terms
of a solution f to the asymptotic differential equation (1). One calls m ≺ v a potential dominant
monomial if NP×m /∈ C. If c ∈ C is such that cm ≺ v and NP×m(c) = 0 then the corresponding
term cm is called a potential dominant term.

A potential dominant monomial m is said to be algebraic if NP×m ∈ C[c] r C, differential if
NP×m ∈ C[c′]. A potential dominant monomial involving both c and c′ in C[c, c′] r (C[c]∪C[c′]) is
said to be mixed.

The algebraic potential dominant monomials correspond to the slopes of the Newton polygon
in a non differential setting. However, they can not be determined directly as a function of the
dominant monomials of the Pi, because there may be some cancellation of terms in the different
homogeneous parts during multiplicative conjugation. The algebraic potential dominant monomials
are determined by successive approximation:

Proposition 1. Let i, j be such that Pi 6= 0 and Pj 6= 0. There exists a unique monomial m such
that N(Pi+Pj)×m

is non homogeneous.

This unique monomial is called an equalizer or the (i, j)-equalizer for P . An algebraic potential
dominant monomial is necessarily an equalizer (see [5]). Consequently, there are only a finite
number of algebraic potential dominant monomials. In the proof of proposition 5.3 in [5], the
author gives a method to compute such monomials.

Example. Consider the algebraic differential equation

P (f) = f + ff ′′ − f ′2(2)

One starts by computing the potential dominant monomials of f . One first has to find the (1, 2)-
equalizer relative to 2. Since DP2 must be in cN(c′)N one cannot have NP2 = P2 so one has to
compute

P↑ = f + e−2x
(
−ff ′ + ff ′′ − f ′2

)
In order to equalize P↑1 and P↑2 one conjugates P multiplicatively with e2x:

P↑×e2x = fe2x + e−2x
(
−fe2x(fe2x)′ + fe2x(fe2x)′′ − (fe2x)′2

)
= e2x

(
f − 2f2 − ff ′ + ff ′′ − f ′2

)
One has

P↑×e2x↑ = e2x(f − 2f2)− ex(ff ′) +
(
ff ′′ − ff ′ − f ′2

)
One observes that DP↑×e2x↑ = c − 2c2 ∈ C[c] so one has found the (1, 2)-equalizer which is e =
e2x↓ = x2. Since NP×e = c − 2c2 the corresponding algebraic potential dominant term of f is
τalg = 1

2x
2.

In order to find the differential potential dominant monomials, it suffices to consider Pi since
NP×m,i = NPi,×m if c′|NP×m and NP×m 6= 0. One rewrites Pi = RP,i(f †)f i where the order of RP,i

in f † = f ′/f is less than or equal to 1 and calls RP,i the ith Riccati equation associated to P .

Proposition 2. The monomial m ≺ v is a potential dominant monomial of f w.r.t. Pi(f) = 0 if
and only if

R
P,i, m′

m

(f †)
(
f † ≺ 1

x log x log log x · · ·

)
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has strictly positive Newton degree.

Example. Consider the algebraic differential equation (2) given in the previous example. One has

RP,1 = 1, RP,2 = f †
′
.

RP,1 has no roots and RP,2(f †) = 0 has all constants λ ∈ C as its solutions modulo 1
x log x log log x··· .

Consequently eλx is a potential dominant monomial of f for all λ ∈ C such that eλx � 1. The
corresponding differential dominant terms are of the form τdiff

µ,λ = µeλx with µ 6= 0 and eλx � 1.

2.3. Quasi-linear differential operators and distinguished solutions. The equation (1) is
quasi-linear if its Newton degree is one. A solution f to such an equation is said to be distinguished
if fdf̃−f

= 0 for all other solutions f̃ to (1).

Theorem 3 (Theorem 6.3 of [5]). Assume that the equation (1) is quasi-linear. Then it admits a
distinguished transseries solution.

2.4. Other terms of solutions. Using the previous results, one knows how to determine the
potential dominant terms of solutions to (1). One is now interested in obtaining more terms. A
refinement is a change of variables together with an asymptotic constraint f = φ + f̃ (f̃ ≺ ṽ).
Such refinement transforms (1) into

P+φ(f̃) = 0 (f̃ ≺ ṽ).(3)

Proposition 3. Let τ be the dominant term of φ. The Newton degree of (3) is the multiplicity of τ
as potential dominant term in (1).

Example. In order to find more terms of the solution to (2) one has to refine the equation. First of
all, consider the refinement associated to the algebraic potential dominant term,

f = τalg + f̃ (f̃ ≺ τalg),

which transforms (2) into

2f̃ − 2xf̃ ′ +
1
2
x2f̃ ′′ + f̃ f̃ ′′ − f̃ ′2 = 0 (f̃ ≺ x2).(4)

Since P0 = 0 one first observes that f = 1
2x

2 is actually a solution of (2). Since 1
2x

2 is a potential
dominant term of multiplicity 1 of f , the Newton degree of (4) is one. The only potential dominant
monomials of f̃ therefore necessarily correspond to solutions modulo 1

x log x log log x of the Riccati
equation

2− 2xf † +
1
2
x2
(
f †

2
+ f †

′)
= 0

These solutions are of the form f † = 1
x + · · · and f † = 4

x + · · · which leads to the potential dominant
monomials x and x4 from which one removes x4 since x4 6≺ x2. Expanding one term further, one
sees that the generic solution to (4) is

f̃ = λx+
λ2

2
with λ ∈ C where the case λ = 0 recovers the previous solution. So

f =
1
2
x2 + λx+

λ2

2
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is the first type of generic solution to (2). As to the second case, we consider the refinement

f = τdiff
µ,λ + f̃ (f̃ ≺ τdiff

µ,λ )

which transforms (2) into

µeλx +
(
λ2f − 2λf ′ + f ′′

)
µeλx + f + f̃ f̃ ′′ − f̃ ′2 = 0 (f̃ ≺ µeλx)(5)

This equation has Newton degree one and one observes that the linear part of this equation only
admits solutions with dominant monomial eλx or xeλx. Consequently (5) admits at most one
solution. By Theorem 3 one knows that quasi-linear equations always admit at least one solution.
This leads to the following second type of generic solution to (2):

f = µeλx − 1
λ2

+
1

4µλ4
e−λx

For this example, we found exact solutions but the expansion are infinite in general.

3. A Differential Intermediate Value Theorem

Theorem 4 ([4]). Let P be a differential polynomial with coefficients in T. Given ϕ < ψ in T such
that P (ϕ)P (ψ) < 0, there exists an f ∈ (ϕ,ψ) with P (f) = 0.

If there exists a differential polynomial with coefficients in T which admits a sign change on a
non empty interval (ϕ,ψ) of transseries, one uses the differential Newton polygon method to shrink
the interval further and further while preserving the sign change property. Ultimately, one ends up
with an interval which is reduced to a point which will be seen as a zero of P .

Corollary 1. Any algebraic equation of odd degree has at least one transseries solution.

4. Conclusion

In [3] this approach of transseries was introduced, based on Écalle’s works (see [1]). In [5] the
approach is generalized to complex transseries. In particular, some results on the factorization of
linear differential equation are presented. There remains some difficulties in this generalization, as
to determine the differentially algebraic closure.

The transseries formalism could also be used to solve functional equations, and the multiple
results should be extended to such operators.
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2002. Université de Lille, Lille, France). pp. 117–122. – ACM Press, New York, . Conference proceedings.
[7] von zur Gathen (Joachim) and Gerhard (Jürgen). – Modern computer algebra. – Cambridge University Press,

New York, , xiv+753p.


