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Abstract
The classical cosine formula for enumerating domino tilings of a rectangle, due to Kasteleyn,
Temperley, and Fisher is proved using a combination of standard tools from combinatorics
and algebra. For further details see [4].

1. Introduction

A classical result in combinatorial enumeration, first proved by Kasteleyn [3] gives the number
of domino tilings of an m× n rectangle (mn even) as

km,n =
dm/2e∏
j=1

cn+1
j − dn+1

j

2bj

with bj =
√

1 + cos2 jπ
m+1 , cj = bj + cos jπ

m+1 , and dj = bj − cos jπ
2m+1 .

The result can be written in a nicer way when m and n are even to get the “cosine formula:”

k2m,2n = 4mn
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n∏
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(
cos2

jπ

2m+ 1
+ cos2

kπ

2n+ 1

)
Here is a new proof of this cosine formula. It uses the following notions:
– the method of determinant evaluation by counting families of non-intersecting paths in a

graph,
– the inversion formula relating heaps and trivial heaps in a commutation monoid,
– in the particular case of a line, the interpretation of heaps in terms of lattice paths and their

relation to the matching polynomials ,
– the determinant evaluations due to Laplace and Binet–Cauchy
– the Sylvester matrix of two polynomials and its determinant, the resultant.

These notions are explained in Section 2 of the full paper [4]. We now concentrate on the proof.
The idea is to show that the number of domino tilings of a (2m × 2n) rectangle can be expressed
as a resultant of two matching polynomials from which the cosine formula can be deduced. In
Section 3 a multivariate version is given.

2. The Proof

2.1. From tilings to paths. Domino tilings of a 2m × 2n rectangle can be coded by systems of
vertex-disjoint paths in a particular graph which is part of the Generalized Pascal Triangle. The
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graph Γm,n can be defined as a graph whose vertices are the lattice points (i, j) ∈ Z for 0 ≤ i ≤ 2n,
0 ≤ j ≤ 2m, and i+j even, and whose vertex (i, j) has three outgoing edges to vertices (i+1, j+1),
(i+ 2, j), and (i+ 1, j − 1).

The m sources are the points of abscissa 0 and the m targets are the points of abscissa 2n. The
ith source has coordinates

(
0, 2(i−1)

)
and the ith target has coordinates

(
2n, 2(i−1)

)
. An example

of the graph Γ3,4 is given below:

Domino tilings are in bijection with sets of m non-intersecting paths on Γm,n. Given a tiling,
start on the left side and traverse the tiled rectangle according to the rules:

– if a vertical tile is hit traverse diagonally,
– if a horizontal tile is hit traverse straight.

Starting with a tiling on the 6× 8 rectangle an example of the bijection is illustrated:

Using the theory of non-intersecting paths [1], this shows that k2m,2n = detHm,n where the
entry hi,j in Hm,n is the number of paths from the ith source to the jth target.

2.2. Extending the graphs of the path. Now Γm,n is extended to the left and to the right to
create a new graph Γ̄m,n by adding to it:

– vertices (i, j) ∈ Z for 2n < i < 2n+ 2m, 2n− 2m < i− j < 2n, and i+ j even,
– vertices (i, j) ∈ Z for −2m+ 2 ≤ i < 0, −2m+ 2 ≤ i− j < 0, and i+ j even,

and by connecting among themselves the added vertices and the vertices of Γm,n whenever NE-edges
and SE-edges are possible.

An example of the graph Γ̄3,4 is given in Section 2.3.
In that graph the ith source has coordinates (−2i + 2, 0) and the jth target (2n + 2m − 2j +

1, 2m − 2). It is obvious that the number of systems of vertex-disjoint paths on Γm,n is equal to
the number of systems of vertex-disjoint paths on Γ̄m,n. This shows that k2m,2n = det H̄m,n where
the entry h̄i,j in H̄m,n is the number of paths from the ith source to the jth target on Γ̄m,n.
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2.3. Splitting the paths. Let Ln denote the graph of (n + 1) points on a line. Given a path
leading from the ith source of Γ̄m,n to the jth target, the horizontal steps define a trivial heap
of L2n−1 and the up-down steps are equivalent to a heap of L2m−1.

An example is given below:

If the path has k horizontal steps, then the trivial heap has k pieces and the resulting heap has
n+ i− j−k pieces. Let fn,k (resp. gm,k) be the number of trivial heaps (resp. heaps) with k pieces
on L2n−1 (resp. L2m−1). Then we define m× (m+ n) matrices

Fm,n = [fn,i−j ]0≤i<m,0≤j<m+n and Gm,n = [gm,n+i−j ]0≤i<m,0≤j<m+n.

Then H̄t
m,n = Fm,nG

t
m,n.

2.4. Dualizing path systems. According to the Binet–Cauchy formula

detFm,nG
t
m,n =

∑
J∈([m+n]

n )

detFm,n〈J〉detGt
m,n〈J〉.

Let Φm,n be the graph consisting of m+n horizontal lines joined by vertical edges labeled from 1
to 2n− 1 as follows for n = 3 and m = 4. It has m+ n sources u(u1, . . . , um+n) and m+ n targets
v = (v1, . . . , vm+n). The vertical edges are directed from top to bottom. The Gessel–Viennot
machinery [1, 2] says that:

– detFm,n〈J〉 = non-intersecting paths in Φm,n from u[m] to vJ ,
– detGt

m,n〈J〉 = non-intersecting paths Φn,m from u[n] to v[n+m]\J .
Therefore

detGt
m,n〈J〉 = detFm,n〈[m+ n]\J〉.

2.5. The resultant appears. Having

detFm,nG
t
m,n〈J〉 =

∑
J∈([m+n]

m )

detFm,n〈J〉detFm,n〈[m+ n]\J〉 = det
[
Fm,n

F ′
m,n

]

with F ′
m,n is the matrix Fm,n where all the elements are multiplied by (−1)m+n.

Now we have a Sylvester matrix and

det
[
Fm,n

F ′
m,n

]
= resultant

(
fn(t), fm(−t)

)
with

f0(t) = 1, f1(t) = 1 + t, fn+1(t) = (t+ 2)fn(t)− fn+1(t).
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2.6. The formula. Now to get the formula, fn(t) can be written as:

fn(t) =
n∏

j=1

(
t+ 4 cos2

jπ

2n+ 1

)
and for two monomial polynomials a(t) and b(t) with roots αi, 1 ≤ i ≤ n and βj , 1 ≤ j ≤ m:

resultantt(a, b) = an
0b

m
0

n∏
i=1

n∏
j=1

(αi − βj).

The cosine formula formula follows directly.

3. A Multivariate Refinement

The counting can be refined. To each tiling one can associate a monomial ct(x, y) in the variables
x = (x1, . . . , x2n−1) and y = (y1, . . . , y2m−1). The information about the positions of horizontal
and vertical tiles can be carried over the path systems in the graph Γm,n. The edges will get a
weight as follows:

– an horizontal edge (i, j)→ (i+ 2, j) gets weight xi+1.
– an up-edge (i, j)→ (i+ 2, j) gets weight 1.
– an down-edge (i, j)→ (i+ 1, j − 1) gets weight yj .

Then generalized matching polynomials fn(x; t) = fn(x1, . . . , x2n−1; t) are introduced:

f0(−; t) = 1; f1(x1; t) = t+ x1; fn+1 = (t+ x2n + x2n+1)fn(x; t) + x2nx2n−1fn−1(x; t).

It is easy to check that the proof of Section 2 goes through.

k2m,2n(x,y) = resultant
(
fn(x; t), fm(y; t)

)
This can be also interpreted in terms of 2-tableaux [4].

If we set xi = x and yi = y, the cosine formula counting horizontal and vertical tiles separately [3]:

k2m,2n = 4mn
m∏

j=1

n∏
k=1

(
y cos2

jπ

2m+ 1
+ x cos2

kπ

2n+ 1

)
Now to consider the tiling of an 2m × (2n − 1) rectangle it suffices to set up the counting

machinery for a 2m × 2n rectangle and to set x2n−1 = 0 in order to have the last column of the
rectangle covered with vertically oriented dominos. Then in the resultant the polyonial fn(t) has
to be replaced by f̃n(t) = fn(t)− fn−1(t).

If both side lengths are odd, the same idea applies, but the polynomials always have t as a factor.
This implies that the resultant vanishes which algebraically reflects the obvious combinatorial fact
that a rectangle with an odd area can not be tiled by dominos.

Some other specializations can be find in the full paper [4].
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