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Abstract

TCP (Transmission Control Protocol) is the ubiquitous data transfer protocol in communi-
cation networks. We focus on the control of the congestion of TCP. One long TCP connexion
is studied when the loss rate of a packet tends to zero. It is shown that the Markov processes
renormalized in a suitable way converge to a limit related to an auto-regressive Markov pro-
cess. From a probalistic point of view, exponential functionals associated to compound
Poisson processes play a key role. Analytically, the natural framework of this study turns
out to be q-calculus. The talk presents a joint work with Vincent Dumas, Fabrice Guillemin
and Bert Zwart (see [2] and [3]).

1. Introduction

In communication networks, sources send data to destinations via routers with limited capacity
and TCP is a protocol which allows to transmit data with reliability in a loss network. The basic
principles of TCP are due to Cerf and Kahn in 1973 and are based on acknowledgment: a source
transmits at most W packets without response from destination. The control of congestion is due to
Jacobson in 1987. Roughly speaking, if W packets are successfully transmitted, then the so-called
congestion window size W is incremented by one; if a packet is lost, then W is divided by 2 (more
generally multiplied by a factor δ). This is of course a simplification of the real algorithms involved,
but the basic mechanism of reducing the congestion (called congestion avoidance) is captured by
this model. Other algorithms (Slow Start, Fast Retransmit, and Fast Recovery) are also discussed
(see [3]).

Consider the exchange between the source and the destination: each packet has some probability
of being lost. The influence of the network is described in our model only through this loss process.
We assume first that the packets are lost independently (a more general model where packets are
lost by bursts will be considered in Section 4). Thus the sequence of the congestion window sizes
is a Markov chain (Wα

n ) on N with probability transitions

p
(
x,min(x+ 1, wmax)

)
= e−αx,

p
(
x, bδxc

)
= 1− e−αx,

where wmax is the maximum congestion size, δ ∈ (0, 1) and α > 0. The problems of special interest
are estimations of the throughput (defined here as the mean congestion window size) and the
stationary behavior. Asymptotic estimates will be presented when the loss rate α tends to zero.
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Among other works, simulations are due to Floyd and Madhavi. Approximated models are
investigated by Ott et al. [4] and Padhye et al., and analytical results are due to Adjih et al.,
Altman et al. [1], and Baccelli et al.

2. Convergence Results When the Loss Rate Tends to Zero

The main result of this section is that the congestion window size is of the order of 1/
√
α when

the loss rate or equivalently α tends to zero. For the sake of simplicity, assume that the maximum
window size wmax is infinite.

Theorem 1. If limα→0
√
αWα

0 = w and Wα(t) =
√
αWα

bt/
√

αc then
(
Wα(t)

)
converges in distri-

bution to the Markov process
(
W (t)

)
given by W (0) = w whose infinitesimal generator is

Ω(f)(x) = f ′(x) + x
(
f(δx)− f(x)

)
.(1)

where f is C1 on R+.

A similar result is also valid for the embedded process (V α
n ) on N where V α

n is the state of the
Markov chain (Wα

n ) just after the nth loss. It is clearly a Markov chain whose transitions are such
that if V α

0 = x ≥ 1 then
V α

1 =
⌊
δ(x+Gα

x)
⌋

where P(Gα
x ≥ m) = exp

(
−α(mx + m(m − 1)/2)

)
. Indeed,

√
α is the right scaling for (Gα

x)
and (V α

n ).

Proposition 1. For x ∈ R+, as α tends to zero, the sequence
(√
αGα

bx/
√

αc
)

converges in distri-

bution to a random variable Gx with the property that for y ≥ 0,

P
(
Gx ≥ y

)
= exp−(xy+y2/2) .(2)

Theorem 2. If limα→0
√
αV α

0 = v then (
√
αV α

n ) converges in distribution to the Markov chain(
V n

)
with V 0 = v and transitions

V n+1 = δ
(
V n +GV n

)
.

3. The Equilibrium

Up to now, a closed form expression for the invariant probabilities of the Markov chains (Wα
n )

and (V α
n ) is not known, but only bounds in some special cases. Nevertheless these invariant proba-

bility measures converge in distribution when α tends to 0 respectively to the distribution of W∞,
a random variable with distribution the invariant distribution of

(
W (t)

)
and of V∞, a random vari-

able with distribution the invariant distribution of
(
V n

)
. These limiting probabilities have rather

simple closed form expressions. The key argument is the following result.

Lemma 1. For x > 0, if Gx is defined by (2) then(
x+Gx

)2 dist.= 2E1 + x2

where E1 is an exponentially distributed random variable wih parameter 1.

It implies the important fact that the square of the limiting embedded Markov chain
(
V

2
n

)
is an

AR (auto-regressive) process. By definition a process (Xn) is AR if and only if Xn+1 = AnXn +Bn

where (An) and (Bn) are i.i.d. In Altman [1] the AR property is assumed, a priori, for the Markov
chain

(
V n

)
itself. The following result presents this property which leads to a close form expression

for the distribution of V∞ and its density function.
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Proposition 2. The sequence
(
V

2
n

)
is AR. More precisely for n ∈ N,

V
2
n+1 = δ2

(
V

2
n + 2En

)
where (En) is an i.i.d. sequence of exponentially random variables with parameter 1. The distribu-
tion of V∞ is thus given by

V∞
dist.=

√√√√2
+∞∑
n=1

δ2nEn
dist.=

√
2
∫ +∞

0
δ2N(s) ds

where N is a Poisson process with parameter 1. The density function hδ of V∞ is given by

hδ(x) =
1∏+∞

n=1(1− δ2n)

+∞∑
n=1

1∏n−1
k=1(1− δ−2k)

δ−2nxe−δ−2nx2/2 (x ≥ 0).

The throughput of the TCP model is defined in the literature by ρα(δ) = limn→+∞
1
n

∑n
k=1W

α
k .

The ergodic theorem for the Markov chain (Wα
n ) gives that ρα(δ) = E(Wα

∞). Using the embedded
chain

(
V n

)
and defining the asymptotic throughput as ρ(δ) = limα→0

√
αρα(δ), the following result

can be deduced from Proposition 2.

Corollary 1. The asymptotic throughput of the TCP model when α tends to 0 is given by

ρ(δ) =
δ

(1− δ)E(V∞)
=

√
2
π

+∞∏
n=1

1− δ2n

1− δ2n−1
.

Remark. For the case of TCP, δ is set to 2 and the throughput ρ(1/2) is approximately 1.3098,
which is the value observed in earlier simulations and experiments by Floyd, Padhye, and Madhavi.

4. A More General Model

A model with correlated losses generalizes the previous one. The evolution of Wα
n , the congestion

window size over the nth RTT (Round Trip Time) interval, i.e., the maximum number of packets
that can be transmitted without receiving acknowledgement from destination, is given as previously
by the AIMD (additive increase, multiplicative decrease) algorithm: Wα

n+1 = Wα
n +1 when none of

the Wα
n packets is lost and Wα

n+1 = max
(
bWα

n c, 1
)

otherwise. Nevertheless packet losses occur by
clumps: if a packet is lost then several packets are lost during the following RTT intervals. These
“clumps” are i.i.d. (see [3] for a complete definition). In particular if Xn is the number of losses in
the nth clump then (Xn) is i.i.d. Though (Wα

n ) is not a Markov chain, the embedded chain at the
end of the consecutive clumps (V α

n ) is still Markov. Thus convergence results of Section 2 when
the loss rate α tends to zero are valid with the infinitesimal generator in Theorem 1

Ω(f)(x) = f ′(x) + x

∫
R+

(
f(δux)− f(x)

)
PX1(du)

where the distribution of X1 is denoted by PX1 and δ replaced by δX1 in Theorem 2. As to
Section 3, Proposition 2 is replaced by the following.

Proposition 3.

V
2
∞ = δ2X1

(
V

2
∞ + 2E1

)
where X1, E1, and V∞ are independent random variables, E1 being a random variable with an
exponential distribution with parameter 1.
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Let I be a solution to

I
dist.= βX1I + E1

where β = δ2 and E1, I, and X1 are independent. By definition, it turns out that I is the
exponential functional associated to the Lévy process Y (t) = log 1

β

∑N(t)
k=1 Xk, N being a Poisson

process with parameter 1. This functional occurs in mathematical finance (Asian options) where
the Lévy process is generally a brownian motion with drift. In this setting, Bertoin, Carmona,
Monthus, Petit, Yor, and many others (see for example Yor [5] for a survey) proved that the
density of I is the solution of an integro-differential equation and that the moments of I are known.
We present here an expression of the distribution of I for some special cases (X1 = 1, X1 with
exponential distribution, and X1 having a rational generating function). The Laplace transform
of I can be expressed as a q-hypergeometric function (see [3] for details). The following proposition
gives its fractional moments, in particular E(

√
I).

Proposition 4. For each real s, if −s is not in N∗, E
(
β(s+1)X1

)
<∞ and E

(
1

1−βX1

)
<∞ then

E(Is) = Γ(s+ 1)
+∞∏
k=1

1−E
(
β(s+k)X1

)
1−E(βkX1)

.

As a sketch of the proof, to obtain the fractional moments, if ψ(λ) = E(e−λI) then, from the
definition of I, we derive

ψ(λ) =
1

1 + λ
E
(
ψ(λβX1)

)
,

which gives a simple recurrence relation on the Mellin transform ψ∗(s) =
∫ +∞
0 ψ(λ)λs−1 dλ of ψ.

Then, using the fact that ψ∗(s) = E(I−s)Γ(s) for <(s) > 0, one proves the result.
As in the independent losses model, asymptotic throughput when α tends to zero can be derived.

Theorem 3. The asymptotic throughput for the correlated model when α tends to zero is given by

ρX1
(δ) = lim

α→0

√
αE(X1) ρα =

√
2E(X1)

π

+∞∏
n=1

1−E
(
δ2nX1

)
1−E

(
δ(2n−1)X1

) .
To conclude it is possible to compare throughputs for different distributions of X1. In particular,

the throughput for the independent losses model is a lower bound for the throughput of a correlated
losses model (see [3] for details).
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