
Algorithms Seminar 2001–2002,
F. Chyzak (ed.), INRIA, (2003), pp. 107–112.

Available online at the URL
http://algo.inria.fr/seminars/.

Approximate Matching of Secondary Structures

Matthieu Raffinot

Génopôle, Université d’Évry (France)

February 25, 2002

Summary by Pierre Nicodème

Abstract

This talk presents an algorithm to search for all approximate matches of a helix in a genome,
where a helix is a combination of sequence and folding constraints. It is a joint work with
Nadia El-Mabrouk of University of Montréal and was presented at the RECOMB 2002
congress [1]. The method applies for more general secondary RNA structures including
several helices.

1. Introduction

We give in this section an intuitive description of the problem considered and of the method used.
We refer to the next section for more precise definitions. We consider the alphabet Σ = {A,C,G, T}
of DNA. RNA molecules are subject to Watson–Cricks base-pairings constraints, where the pairs
are A↔ T and C ↔ G. A network expression over Σ? is a regular expression built with the union
and concatenation operators. The complement w of a word w is obtained by reversing the order of
the letters of a word and by taking the pairing letter for each letter. For instance,

complement(AAGT) = AAGT = ACTT.

The complement E of a network expression E is the set of complements of the words of the language
defined by E. A secondary expression S is of the form

S = N1E1N2E2N3 . . . N
′
3E2N

′
2E1N

′
1,

where the Ni, N ′
i , and Ei are network expressions. The E1, E2, . . . (resp. E1, E2, . . .) are marked sl

(resp. sr) for left (resp. right) strands. Figure 1 represents an example of secondary structure,

Y D
B N N Y C A

(a) | | | | | R
Y V N N R G C

T T

C T
T G C C C A

(b) | | | | | G
T A C G G G C

T T

Figure 1. (a) A secondary expression S representing a signature for the TΨC
region of tRNAs; (b) An occurrence of the secondary expression S.

where B = C|G|T, N = A|C|G|T , Y = C|T, D = A|G|T, R = A|G and V = A|C|G. With
the same definition for the letters B, N , Y , D, R, and V , and the network expression E defined
by E = BNNY C, this secondary structure may be written EYDARCTTEY . The problem is to

108 Approximate Matching of Secondary Structures

find all occurrences of such a structure in a DNA text. The more general approximate matching
problem searches for matches with errors.

The algorithm goes along the following steps for matching with a secondary expression S.
1. Build a deterministic finite automaton A recognizing the language S defined by S when

pairing constraints are erased.
2. Build over A a pushdown automaton P. This automaton is designed to memorize which

choices are made each time a union symbol | is met during the reading of the left strands
of S (stacking phase), and to constraint the path followed during the reading of the right
strands (unstacking phase).

3. When matching with errors is considered with a sequence of size n, an alignment graph
is built with n + 1 copies of the pushdown automaton P and a dynamical programming
method is used to find the best alignment. Different valid (in the sense of the unstacking
constraints) paths may lead to the same state, and it is therefore necessary to maintain
during the dynamical programming step sets of stacks.

Note that Myers and Miller [2] give an algorithm to find approximate matching of regular expres-
sions with complexity O(np), where n is the size of the sequence and p is the size of the regular
expression; this method applies to primary structures, but not to secondary structures.

2. Definitions

Definition 1 (network expression). For α ∈ Σ ∪ {ε}, the symbol α is a network expression. If E1

and E2 are network expressions, E1|E2 and E1E2 are network expressions.

Definition 2. The set NetSet is the set of network expressions.

Definition 3 (complement). The complement E of a regular expression is defined by: (i) ε = ε,
(ii) A = T , T = A, C = G, G = C, (iii) E1E2 = E2E1 and E1|E2 = E1|E2.

Definition 4 (secondary expression). A secondary expression is a sequence of elements of NetSet×
{p, sl, sr}, where p, sl, and sr respectively label unpaired, left strand, and right strand network
expressions. The set of secondary expressions is recursively defined by: (i) if E is a network
expression, then S = (E, p) is a secondary structure; (ii) if E1, E2, E3 are network expressions, and
S′ is a secondary expression, then the sequence S = (E1, p)(E2, sl)S′(E2, sr)(E3, p) is a secondary
expression.

Definition 5. The language L(S) specified by a secondary expression S is recursively defined by:
– if S = (E, p), then L(S) = L(E);
– if S = (E1, p)(E2, sl)S′(E2, sr)(E3, p) such that E1, E2, E3 are network expressions and S′ is

a secondary expression, then

L(S) =
{
u ∈ Σ?

∣∣ u = vwxwz for v ∈ L(E1), w ∈ L(E2), z ∈ L(E3), and x ∈ L(S′)
}
.

Definition 6. For a secondary expression S, the NetSet expression NetSet(S) is obtained by erasing
the labels in the secondary expression.

As an example, if S = (E1, sl)(E2, p)(E1, sr), then NetSet(S) = E1E2E1.

Definition 7 (approximate match). Given a scoring function δ between two sequences (hamming
distance, edit distance, measure of similarity), the set of sequences approximately matching a sec-
ondary expression S within k under scoring function δ is Lδ(S, k) =

{
A
∣∣ ∃B ∈ L(S), δ(A,B) ≤ k

}
.

Note that this defines approximate matching of primary structures (sequences).

M. Raffinot, summary by P. Nicodème 109

3. A Pushdown Automaton Recognizing a Secondary Expression

The language generated by a secondary expression S is a regular language recognized by a finite
automaton. However, the size of the automaton is exponential in the number of symbols | in S.
Using a pushdown automaton gives a more efficient algorithm.

El-Mabrouk anf Raffinot use a state labelled1 finite pushdown automaton referred to later as
ε-NFPA. Formally, an ε-NFPA P = 〈Σ,Γ, V, E, λ, γ, θ, φ, I〉 consists of:

– an input alphabet Σ;
– a stack alphabet Γ;
– a set V of vertices called states;
– a set E of directed edges between vertices;
– a mapping λ of V on Σ ∪ {ε};
– a mapping γ of V × (Σ ∪ {ε})× Γ on a finite subset of V × Γ?;
– an initial state θ;
– a final state φ;
– a particular stack symbol I ∈ Γ called the start symbol.

If s and t are states, l is a letter of Σ ∪ {ε}, and the value of the top of the stack is Z, the
interpretation of γ(t, l, Z) = (s, α), with α ∈ Γ? is that the automaton moves from state s to state
t while reading letter l, popping Z from the top of the before pushing α into the stack. From there
follows a partial mapping µ of (V,Σ?,Γ?) onto itself defined by

(t, lw, Zβ)
µ7−→ (s, w, αβ) if γ(t, l, Z) = (s, α).

Let µ? be the transitive closure of µ. The language accepted by the pushdown automaton P is

L(P) =
{
w
∣∣ (θ, w, I)

µ?

7−→ (φ, ε, α), α ∈ Γ?
}
.

(Note that by construction, for secondary structures, we have α = ε in the last equation.) The
letter µ will be omitted in what follows.

Figure 2. The state labelled ε-NFA recognizing NetExp(S), for S = (E1, sl)(E2, p)
(E1, sr), with E1 = ((AC)|G)(A|C) and E2 = T . Black states are labelled by ε.
The numbers 1, 2, 3, 4 mark the marked states. The loop is an unpaired region.

The construction of the automaton P recognizing S goes along the following steps:
1. build a state-labelled ε-NFA A recognizing Netset(S), with labelling function λ;
2. mark the possible choices for each union symbol | of the left strands of S;
3. define the rules for stacking the marks during reading the left strands of S;
4. define the unstacking and transitions rules while reading the right strands of S.

1A corresponding classical transition labelled automaton would be such that all the transitions entering a state
are labelled with the same letter of Σ ∪ {ε}, whatever this state is.

110 Approximate Matching of Secondary Structures

T

A

C

T

A

C

T

A

C

(0,)θ

δ(,)ε C

δ(,)ε Cδ(,)
A

ε
δ(,)

G
ε

A
ε

δ(,)

δ(,)ε A

A ε
δ(,)ε T

δ(,)A T
δ(,)A Aδ(,)A C

ε A

A ε

ε

δ(,)

δ(,)

δ(,) δ(,)T

A

G

Figure 3. The alignment graph for a sequence Q = AG versus the network expres-
sion (A|C)T .

Figure 4. The alignment graph for Q = AT versus NetExp(S) = (A|C)T (T |G).

Marking the states. For each (Ei1 |Ei2) expression of S, where neither Ei1 nor Ei2 contains a union
symbol |, and Ei1 and Ei2 are left strands expressions, let sij be the state of A corresponding to the
last atomic expression of Eij (j = 1, 2). Each such state is marked unambiguously with a letter γ
of Γ (two different states are marked by different letters). The other states of the left strands and
the states of unpaired regions remain unmarked. Mark the states of the right strands by mirroring
the corresponding left strands. An example of marking is given in Figure 2 where Γ is a subset
of N+. Let ν be the mapping associating to a marked state s its mark ν(s).

Defining the mapping γ. The mapping γ of the pushdown automaton P is defined as follows:
Let Z be the top symbol of the stack, l be any character of Σ∪ ε, s be any state, and t→ s be

any edge leading to s in the automaton A. The transition γ(t, l, Z) is defined in the automaton P
if and only if l = λ(s). In that case:

M. Raffinot, summary by P. Nicodème 111

– if s is an unmarked state, then γ
(
t, λ(s), Z

)
= (s, Z);

– if s is a marked sl-state, then γ
(
t, λ(s), Z

)
=
(
s, ν(s)Z

)
;

– if s is a sr-state such that ν(s) = Z, then γ
(
t, λ(s), Z

)
= (s, ε).

This definition of γ constrains the traversal of the right strands to be the mirror of the traversal of
the corresponding left strand.

Lemma 1. The pushdown automaton P recognizes the language generated by the secondary expres-
sion S.

See [1] for a proof.

4. Matching with Errors and Alignment Graph

For the problem of aligning a network expression E to a sequence Q of size n within a threshold k,
Myers and Miller2 showed in [2] that it is easier to reduce the problem to one of finding a shortest
source-to-sink path in a weighted and directed alignment graph depending on E and Q. The graph
is constructed from n + 1 copies of the ε-NFA recognizing E, arranged one on top of another.
Figure 3 shows an alignment graph of the expression E = (A|C)T and of the sequence Q = AG.

Formally, the vertices of the graph are the pairs (i, s) for 1 ≤ i ≤ n + 1 and s ∈ V . Insertion,
deletion and substitution edges are defined as follows:

– if i > 0, then there is a deletion edge from (i− 1, s);
– if s 6= θ, then for each state t such that t→ s, there is an insertion edge from (i, t);
– if i > 0 and s 6= θ, then for each state t such that t → s, there is a substitution edge from

(i− 1, t).

The construction of Myers and Miller is applied to the pushdown automaton P. Figure 4 shows
the alignment obtained when matching Q = AT against NetExp(S) = (A|C)T (T |G), with S =
(A|C)T (A|C). The problem is that several paths may lead to the same state; it is therefore
necessary to maintain sets of stacks. For a state (i, s), let Π(i, s) be the set of least cost paths
from (0, θ) to (i, s). For a path π ∈ Π(i, s) let σ(π) be the sequence obtained by concatenating the
labels λ of the states on this path. The set of stacks of a state (i, s) is defined by

Stack(i, s) =
{
α ∈ Γ?

∣∣ ∃π ∈ Π(i, s) such that (θ, σ(π), I) ?−→ (s, ε, α)
}
.

A path aligning the first i letters Q[1, i] of Q and a sequence σ(π) for a state s is a valid path if
it respects the constraints given by the secondary expression. Therefore σ(π) must belong to the
language recognized by P(s), where s is made the final state of P.

An edge from (j, t) to (i, s) is valid (noted (j, t) v→ (i, s)) if the two following conditions are met:

– (j, t)→ (i, s) is an insertion, deletion or substitution edge;
– if (j, t)→ (i, s) is a substitution or deletion edge and s is a marked sr-state, then there is a

stack P in Stack(j, t) with top symbol λ(s).

Thus the problem of approximately matching a prefix of size i of Q to a prefix σ(π) of a word of L(S)
is equivalent to finding a least cost valid path between source vertex (0, θ) and (i, s). Computing
such a path may be done by dynamic programming (procedure CentralRec of Figure 5).

2There is an error in this section that follows the content of the talk: a suboptimal left strand alignment may
lead to an optimal right strand alignment. El-Mabrouk and Raffinot are working at correcting this error, that is
compatible with Myers and Miller’s approach.

112 Approximate Matching of Secondary Structures

procedure CentralRec:
1. C(0, θ) = 0
2. C(i, s) = min

(i,t)
v→(i,s)

{C(i, t) + δ(ε, λ(s))}
3. if (i− 1, t) v→ (i, s) then
4. C(i, s) = min{C(i, s), C(i− 1, t) + δ(qi, λ(s))}
5. if (i− 1, s) v→ (i, s) then
6. C(i, s) = min{C(i, s), C(i− 1, s) + δ(qi, ε)}

Figure 5. Central recurrence computing the value of a least cost valid path from
the source vertex to each vertex (i, s) of the alignment graph. The letter qi is the
letter at position i in Q.

Maintaining the set of stacks. El-Mabrouk and Raffinot implement the set of stacks as binary
trees. They define a set of operations over these trees:

– Insert: a new node is inserted at the top of a tree;
– Remove: remove the top element;
– Combine: a new root points to trees T1 and T2 that were previously constructed;
– Merge: “superposition” of two trees; there must be coherence between the nodes of the two

trees.
During the reading of the sl-strands, trees are grown through Insert, Combine and Merge operations,
while during the reading of the right strand, the Remove operation is used, and one of the left or
right tree is substituted to the tree representing the stacks.

Approximate matching algorithm. When looking for approximate matches of a secondary expres-
sion against a sequence, one alignment graph is constructed for each position of the sequence. Note
that practically only two copies of the automaton P are maintained.

5. Complexity

Let p be the size of the secondary expression S (the number of all characters of the network
expression NetExp(S)), and r be the number of symbols | in S. Let n be the size of the genome
being traversed.

There are O(np) vertices in the alignment graphs, and the in-degree of the vertices is at most 3.
Computing the value at each vertex by CentralRec takes O(1) time. Thus, computing all the costs
C(i, s) can be done in O(np) time. When considering the stacks, the procedure Merge is O(r) in
the worst case (other procedures have lower complexity).

This gives a final complexity of O(rpn).
As an example, scanning the 4MB of bacillus subtillis with a 200 base long secondary structure

takes 215 seconds.

Bibliography

[1] El-Mabrouk (N.) and Raffinot (M.). – Approximate matching of secondary structures. In Sixth Annual Interna-
tional Conference on Computational Molecular Biology. pp. 156–164. – ACM Press, .

[2] Myers (Eugene W.) and Miller (Webb). – Approximate matching of regular expressions. Bulletin of Mathematical
Biology, vol. 51, n̊ 1, , pp. 5–37.

