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Abstract

The algorithm Quicksort was invented by Hoare in 1960. Numerous improvements have
been suggested since then, like optimization of the choice of the pivot or simultaneous use
of several pivots or also hybrid methods. Different parameters like the cost of comparisons,
the size or the height of the associated binary search tree have been studied for Quicksort
and its variants. We present here the principal methods used to get the mean, the variance,
and the nature or at least a few properties of the limit laws of these parameters.

1. Description of the Algorithm and of a Few Variants

1.1. Quicksort. The procedure Quicksort takes as arguments an array A of n elements and two
integers First and Last representing indices of elements of the array. The algorithm runs as follows:
if First < Last then:

1. Choose a pivot in the array (e.g., A[First]).
2. Partition the elements in the subarray A[First] . . . A[Last] so that the pivot value is in place

(let PivotIndex be its position then).
3. Apply Quicksort to the first subarray A[First] . . . A[PivotIndex− 1].
4. Apply Quicksort to the second subarray A[PivotIndex + 1] . . . A[Last].

1.2. Variants. In step 1, the pivot is chosen in a fixed manner. It is possible to use a strategy to
choose the pivot to improve the efficiency of the algorithm. By choosing the pivot randomly, we can
wipe out the possible bias of the data we want to sort. The pivot is all the more efficient if it cuts
the array in two arrays of similar size. With this aim in view, the Quicksort with median of 2t+ 1
consists in picking out 2t + 1 elements randomly in the array to sort, where t is a fixed integer,
and to choose as pivot the (t + 1)th element among the picked elements. Mart́ınez and Roura [7]
even analysed the situation with a sample size depending on n, and obtained that the optimal
sample size to minimize the average total cost of Quicksort, including comparisons and exchanges,
is s = a

√
n+o (

√
n ), for some constant a. Quicksort with 3–3 median consists in picking 3 samples

of the array, each of 3 elements. We take the median element of each sample, so that we are left
with three elements, of which we take again the median element, that we finally choose as pivot.
This strategy can be furthered in choosing m− 1 pivots or medians, among m(t+ 1)− 1 elements,
instead of one only, that leaves us with sorting recursively m subarrays instead of two only.
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Figure 1. Probability of choice of pivot.

1.3. Parameters. The parameters of interest are: the cost in number of comparisons, that is
the internal path length of the associated search tree; the size of the associated m-ary tree; the
profile of the tree. Notice that the size of a binary tree is the number of internal nodes, and that
the size of an m-ary tree for m ≥ 3 is the number of both internal and external nodes. We can
generally compute the first moments or cumulants of these parameters, especially the mean and
the variance, by using generating functions. With the aid of various other tools, it is possible to
show the existence of a limit law for the cost of Quicksort and to derive some properties of this
law. For the other parameters, the knowledge of the moments sometimes turns out to be sufficient
to establish a Gaussian limit.

2. Moments of Internal Path Length

2.1. Expectation. Recall that m is the arity of the tree. The cost expectation fn of Quicksort
and its variants is given by the recurrence relation

(1) fn = tn +
n∑

k=1

P(PivotIndex = k) (fk−1 + fn−k),

which can be rewritten into the equation L
(
f(z)

)
= (1 − z)−β , where f(z) =

∑
n z

n, and the
operator L is of the form L(y) = am(1−z)my(m) + · · ·+a0y. There exists a polynomial I(α), called
the index polynomial, such that L

(
(1−z)−α

)
= I(α)(1−z)−α. The solutions of L(y) = 0 are given

by (1− z)−α logk 1
1−z with I(α) = 0 and k smaller than the order of multiplicity of root α. Given

the initial conditions and the particular solution I(r)(β)(1 − z)−β
(
log 1

1−z

)r, where r is the order
of β as root of I (r can be zero), it is then easy to get the right solution, that is for instance

(2) f(z) =
∑
α

λα

(1− z)α
+

10!
2311776

1
(1− z)2

log
1

1− z
− 26

3
1

1− z

for Quicksort with 3–3 median, and by singularity analysis to compute the following expectations

Method Mean
Quicksort 2n log n
Median of 3 (12/7)n log n
Median of 3–3 1.57n log n
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2.2. Cumulants. Consider a random variable of probability generating function g(z) =
∑

n gnz
n.

Its cumulants are defined by

κp(n) =
∂p

∂yp
ln gn(ey)

∣∣∣∣
y=0

.

Notice that κ1 and κ2 respectively represent the mean and the variance of the considered distribu-
tion. Hennequin [5] showed that the cumulants of median of 2t + 1 Quicksort cost for s-ary trees
are of the form

κp(n) = npKp
s,t(Lp,s,t − (p− 1)! ζ(p)) + o(np),

where ζ is the zeta Riemann function and the constants Ks,t and Lp,s,t are rational numbers easily
computed by induction.

3. Properties of the Limit Law for Internal Path Length (Binary Case)

Though the problem is still open whether there exists a close form expression of the limit law in
terms of known functions, we know some properties of the limit law.

3.1. Existence of a limit law. Let Xn be the random variable counting the number of compar-
isons in an array of size n, and Yn = Xn−µn

n the corresponding normalized random variable. Régnier
showed the existence of a limit law for Yn with almost sure convergence by using martingales.

3.2. Method of contraction. Xn follows the same distribution as n−1+XZn−1 +Xn−Zn , where
Zn is uniformly drawn in the set {1, · · · , n}: Zn − 1 and n− Zn represent the sizes of the left and
right subarrays. In terms of Yn, it rewrites into the recurrence relation

Yn
D= YZn−1

Zn − 1
n

+ Y n−Zn

n− Zn

n
+ Cn(Zn),

for some computable Cn(Zn), and one can guess that the limit law of Quicksort cost is a fixed point
of the equation

Y
D= Y τ + Y (1− τ) + C(τ),

where Y and Y are independent copies of Y , and C(u) = 1+2u lnu+2(1−u) ln(1−u). Rösler [8, 9]
established that it is true by using a method of contraction, working in a metric space of distribution,
endowed with the Wasserstein metrics d2 defined by d2(F,G) = inf ‖X − Y ‖2.

Using the same method but with more precise majorizations, Fill and Janson found the following
bounds on the speed of convergence: d2(Yn, Y ) < 2/

√
n, and more generally dp(Yn, Y ) < cp/

√
n for

certain constants cp. They also showed that dp(Yn, Y ) = O(log n/n).

3.3. Density of limit law.

3.3.1. Existence. Tan and Hadjicostas [10] showed that the limit law Y of Quicksort cost admits a
density, by considering the function hy,z(u) = uy + (1− u)z +C(u), which is clearly related to the
fixed-point equation. By exchanging the axes, we get a curve with two branches r and l that are
differentiable and hence admit a density.

Hence we can write

P
(
h(U) ≤ t

)
=
∫ t

−∞

(
r′ 1[ b,y+1 ] − l′ 1[ b,z+1 ]

)
dλ =

∫ t

−∞
g(y, z, t),
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Figure 2. The function hy,z and its inverse.

(1S is the characteristic function of the set S) and then, for all Borel set B,

µ(B) = P
(
UY + (1− U)Y + C(U) ∈ B

)
=
∫

R2

P
(
hY,Y (U) ∈ N

)
dµ⊗ dν

=
∫

R2

∫
B

(g(y, z, s) d(µ⊗ µ)(y, z)) dλ(s) =
∫

B

(∫
R2

g(y, z, s) d(µ⊗ µ)(y, z)
)
dλ(s),

which proves the result.

3.3.2. Bounds on the density and its derivatives. Fill and Janson showed that, for all integer p,
there exists a constant bp such that the characteristic function φ(t) = E eitY satisfies |φ(t)| ≤ cp|t|−p

for all t ∈ R. Using the equality

f (k) =
1
2π

∫ ∞

−∞
(−it)ke−itxφ(t) dt,

they deduce that the density f of Quicksort is C∞ and the bounds, for all k ∈ N and p ∈ R+,∣∣f (k)(x)
∣∣ ≤ Cp,k|x|−p. In particular we have

∣∣f(x)
∣∣ ≤ 15.3.

3.3.3. Queues on limit distribution. Knessl and Szpankowski [6] established that the left tail of the
limiting distribution has a doubly exponential decay, while the right tail only has an exponential
decay: {

P
(
L(Yn)−EL(Yn) ≤ nz

)
∼ 2

π
1√

2 log 2−1
exp

(
−α exp

(
β−z

2−log−1 2

))
,

P
(
L(Yn)−EL(Yn) ≥ ny

)
∼ a(y) exp(−yb(y)),

where α and β are constants, and a and b are positive and polynomially bounded functions.

3.3.4. Simulation of Quicksort Distribution. Devroye, Fill, and Neininger devised a rejection algo-
rithm that simulates Quicksort in a perfect way. They use a fully known function g majorizing f ,
and a sequence of error bounds based on the difference between the distribution function Fn of Xn

and the limit distribution function F . Figure 3 shows the functions g, Quicksort density (bold
curve), and successive error bounds. The algorithm stops when one goes outside an error bound,
rejects if one is over the upper bound, and accepts if one is below the lesser bound.

4. m-ary Trees

The m-ary search trees are a generalization of binary search trees. We choose now up to m− 1
medians among m(t+ 1)− 1 elements, and put these medians in the same node.
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Figure 3. Quicksort simulation with rejection algorithm.

4.1. Space requirement for m-ary trees. As the number of keys occupying a node can be less
than m− 1 (it corresponds to a subarray with a size inferior to m− 1), an issue at stake for m > 2
is to know the number Xn of nodes (both internal and external) required to sort a given sequence
of n keys.

4.1.1. Moments. It is possible to compute the moments of any order of the centered random vari-
able [2]. The generating function F (z, y) =

∑
n E

(
yXn

)
zn satisfies

Dm−1
z F (z, y) = (m− 1)!Fm(z, y).

For the centered generating function defined by G(z, y) =
∑

n E
(
yXn−µ(n+1)

)
zn = y−µF (zy−µ, y),

where µ satisfies Xn ∼ µn, it translates into

Dm−1
z G(z, y) = (m− 1)! yGm(z, y).

The generating function of the kth factorial moment is Gk(z) = Dk
yG(z, y)

∣∣
y=1

. It satisfies

L[Gk] = k! (m− 1)! (1− z)m−1Qk(z),

where the operator L is here defined by L[G] = (1 − z)m−1Dm−1
z G − m!G, and Qk is a linear

combination of products of Gj ’s with j < k. The asymptotics of the variance depends on the
position of the zeroes of the indicial polynom of L[G2], and the limit behaviour varies with m.

4.1.2. Gaussian limit law for m ≤ 26. The variance is linear if m ≤ 26 because

G2(z) ∼
σ2

(1− z)2
.

If m ≤ 26 then Xn−µn
σ
√

n
→ N (0, 1). Indeed, pumping moments provides an asymptotics for the Gk’s{

G2k−1(z) = o
(
|1− z|−k−1/2

)
,

G2k(z) ∼ (2k)! 2−kσ2k(1− z)−k−1,
which entails

E
(

Xn−µn
σ
√

n

)2k−1
= o(1),

E
(

Xn−µn
σ
√

n

)2k
= (2k)!

2kk!
.

4.1.3. Still an open case for m > 26. The variance is more than linear if m > 26:

Var(Xn) ∼ a(n)n2α−2.

The limit law is conjectured not to be Gaussian any longer. If ever it was, then the normalization
would be exotic, because for m > 26, the limit distribution of the random variable (Xn−µn)/nα−1

does not exist.
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Figure 4. (Borrowed from [2].) Zeros of the indicial polynom Λ(ϑ) of L[G1] for m
from 5 to 40; zeros with positive real parts and the vertical line Re(ϑ) = 3/2 (which
may be called the “phase-change line”) are shown on the right.

4.2. Profile of the tree. Let fn(u) be the generating function of the height of leaves in m-ary trees
of size n. The recurrence fn = um

∑
i πifi, where πi =

(
n

m−1

)−1(n−i−1
m−2

)
is the probability that anm-

ary tree of size n has a first child of size i [3], translates into the differential equation Dm−1
z F (z, u) =

um!F (z, u)(1 − z)1−m, where F (z, u) =
∑
fn(u)zn. It solves to F (z, u) ∼ λ(u)(1 − z)α(u) in the

vicinity of u = 1. Hence fn(u) ∼ λ(u)Γ
(
α(u)

)−1 (
eα(u)−1

)log n
, and according to the Quasi Powers

theorem [4], the limit law of the level of the leaves in an m-ary tree is Gaussian.
It was already noticed in [4] that, heuristically, there seems to be a strong limit theorem for the

profile of binary search trees. Almost sure convergence is now established for the limiting behaviour
of nodes in level k of binary search trees of size n in the central region 1.2 log n ≤ k ≤ 2.8 log n [1],
by use of martingale methods and complex analysis.
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