
Algorithms Seminar 2001–2002,
F. Chyzak (ed.), INRIA, (2003), pp. 19–22.

Available online at the URL
http://algo.inria.fr/seminars/.

A Relaxed Approach to Tree Generation

Philippe Duchon

Labri, Université de Bordeaux I (France)

November 5, 2001

Summary by Marni Mishna

Abstract

An algorithm for the uniform random generation of trees is described. The algorithm is
notable for its simplicity and efficiency. These qualities stem largely from the fact that it
does not precisely control the size of the final tree, rather, it is “relaxed.” The complexity
analysis yields that in certain cases the algorithm is linear. A family of variants with multiple
parameters is also discussed.

1. Relaxed?

Efficient random tree generation is important in many contexts. Very often one does not specif-
ically require trees of a particular size, but rather within a given size range. The idea at hand is to
generate random trees of any possible size and reject those which are not in the given range. The
generation is done in such a way to uniformly generate trees within a fixed size and to minimise
the number of rejections. This simple algorithm is surprisingly efficient.

2. The Trees in Question

The trees are simple, as in the sense of Meir and Moon. That is, each family is linked to a set D
of non-negative integers which dictates the possible number of children f(s) a node s can have. As
the trees are finite, zero is always contained in this set. More precisely, the set D corresponds to
the family TD of trees

TD =
{
t
∣∣ ∀s ∈ T, f(s) ∈ D

}
.

Classic complete binary trees correspond to {0, 2}, for example. Other examples include 1–2 trees
(D = {0, 1, 2}), general trees (D = N) and linear? trees (D = {1, 0}).

They are simple in the sense that they easily admit a generating function decomposition. Con-
sider FD(x) =

∑
n anx

n where an is the number of trees of size n. This can be rewritten

F (x) =
∑
d∈D

xF (x)d = ΦD

(
x, F (x)

)
.

In the weighted model, the size is no longer the number of nodes, rather, a weighted sum where
the weight depends on the degree of the node:

F (x) =
∑

(d,w)∈D

xw(d)F (x)d = ΦD

(
x, F (x)

)
,

where w(d) is the weight of d.

20 A Relaxed Approach to Tree Generation

2.1. Restrictions on D. We allow repetitions in the set. Further we impose a non-periodicity and
a rationality requirement. These are well-described by M. Drmota in [1]. The essential characteristic
guaranteed by these conditions is that F has a square root singularity. That is, F (x0 − h) = F0 −
C
√
h+O(h) and hence an = C ′x−n

0 n−3/2
(
1 +O(n−1)

)
. Given that F has a unique singularity x0

of minimal modulus we set F0 = F (x0) < ∞. Hence, we have that (x0, F0) is a solution of
F0 = ΦD(x0, F0), and further, 1 = ∂ΦD

∂F (x0, F0).

3. Generation à la Galton–Watson

Galton–Watson trees (G.–W. trees) are formed recursively with respect to a given probability
rule π. Suppose π = (πk)k∈N satisfies the three conditions

∑
πi = 1, π0 > 0, πi ≥ 0. We form

the G.–W. tree Tπ recursively by the following method: beginning at the root node, determine the
number of children k, with a random process with probability πk, independently from the other
vertices. If k 6= 0, recurse on each of the children. Notice that this does not a priori exclude infinite
trees. However, a careful selection the probabilities can sufficiently increase the expected number
of finite trees, as the following theorem indicates.

Theorem 1. Let m =
∑

k kπk.

1. If m ≤ 1, then Tπ is finite with probability 1.
2. In particular, if m = 1, The size of Tπ is not integrable; the average size is infinite. We say

the tree is G.–W. critical.
3. If m < 1 the expected size is E

[
|Tπ|

]
= 1

1−m . We say the tree is sub-critical.
4. Otherwise, the tree is of infinite size with a strictly positive probability and we say it is

G.–W. sur-critical.

Example. Let us take a look at what happens in the case of binary trees. Let π = (p, 0, 1− p, 0, . . .),
p > 0. Suppose t is such a tree of size 2n− 1 nodes. Then there are exactly n internal nodes and
n− 1 leaves. Consequently,

P(Tπ = t) =
∏
s∈t

P
(
X = f(s)

)
=
∏
s∈t

πf(s) = pn+1(1− p)n,

which depends only on the size of t.

Example. The binary trees seem perhaps a special case. What can we say about 1–2 trees? Let
π = (α, β, γ, 0, . . .), and let Ni(t) be the number of nodes of t with degree i. Then,

P(Tπ = t) =
∏
s∈t

P
(
X = f(s)

)
= αN0(t)βN1(t)γN2(t).

The probability depends on number of vertices with each type of degree. However, if we set
α = β = γ = 1/3, then the value P(Tπ = t) = 1/3|t| depends only on the size of t.

4. Probability that Tπ = t?

The previous examples give us the intuition to answer the following question: under which
conditions does the probability rely only on the size of the object?

An answer is found in Theorem 2, but first we motivate it with some observations. Notice that
|t| = 1 +

∑
d∈D dNd(t). We choose some 0 < u < 1 and let πd be proportional to ud. Then we get

P(t) =
∏
d∈D

(
ud

ΦD(u)

)Nd(t)

=
u

P
d dNd(t)

ΦD(u)
P

d Nd(t)
=

u|t|−1

ΦD(u)|t|
=

1
u

(
u

ΦD(u)

)|t|
,

Ph. Duchon, summary by M. Mishna 21

which only depends on |t|.
In the weighted case, we say that the size is |t| =

∑
dw(d)Nd(t). We assign to N(t) =

∑
dNd(t),

the number of vertices. In this case, if we select x, u > 0 and set πd = xw(d)ud/ΦD(x, u), we
see that

P(t) =
∏
d∈D

(
xw(d)ud

ΦD(x, u)

)Nd(t)

=
x|t|

u

(
u

ΦD(x, u)

)N(t)

.

Thus, if are principally interested by the weighted size, we can generate them uniformly with a
careful selection of (x, u).

Theorem 2. Let TD be a simple labelled family of trees for which the generating series is F (x) =
ΦD(x, F (x)). Further suppose that (x, u) is a couple satisfying u = ΦD(x, u). Then the G.–W. tree
defined by the generation law

πd =
xw(d)ud

ΦD(x, u)
conditioned to be of weighted size n is a tree of TD, uniformly generated among those of weighted
size n.

5. Relaxed Random Generation

Theorem 2 can be exploited for our random generation purposes. It implies the existence of a
generation scheme where all trees of a given size are equally probable. This notion converts directly
into an algorithm. But first recall the novelty here was to consider a more general situation. Instead
of requiring a tree of size exactly n we consider an acceptable range. We will examine three ranges
[n1, n2] here: strict (n2 = n1), linear (n2 = (1 + λ)n1) and geometric (n2 = n1 + λnα

1). Consider
the following algorithm which seemingly does the most naive thing.

Algorithm. Input: ΦD(x, F), [n1, n2].
1. Determine a couple (x, u) satisfying u = ΦD(x, u);
2. Generate a G.–W. tree t with the generation rule πd = xw(d)ud−1 until the process stops naturally,

or until the total size is greater than n2;
3. If the size of t /∈ [n1, n2] reject t and go to 2. Otherwise, output t.

Some questions must be answered here. For example, how simple is it to assure the non-
periodicity of ΦD? How do we solve for u? How many digits would be required in a numerical
approximation to avoid bias?

5.1. Complexity. For the analysis purposes assume that determining (x, u) is inconsequential to
the complexity. We evaluate:

– E< = E
[
|T |
/
|T | < n1

]
(average size of rejected small tree),

– P< = P
(
|T | < n1

)
(too small),

– P> = P
(
n2 < |T |

)
(too big),

– P= = P
(
n1 ≤ |T | ≤ n2

)
(just right).

The average number of rejections for being too large is P>

P=
. The average number of rejections for

being too small is P<

P=
. Thus, the average cost is at most

n2 + n2
P>

P=
+ E<

P<

P=
.

22 A Relaxed Approach to Tree Generation

Consider now a quick calculation of P= for these three ranges.
The strict case is classic: P

(
|T | = n1

)
= Θ(n−3/2

1).
The linear case yields:∑

n≤k≤(1+λ)n1

P
(
|T | = n1

)
∼ n3/2

1

∑
0≤k≤λn1

C(1 + k/n1)−3/2 = Θ(n−1/2
1).

The geometric case yields:

P= =
∑

n1≤k≤n1+λnα
1

P
(
|T | = k

)
∼ Θ(n−3/2

1)
∑

0≤k≤λnα
1

(1 + k/n1)−3/2 = Cn
−3/2
1 λnα

1 Θ(1) = Θ(nα−3/2
1).

We can summarise the average cost for our three range types:

Case P= Average cost

n2 = n1 Θ(n−3/2) n1 + Θ(n
1/2
1)

Θ(n
−3/2
1)

= Θ(n2
1)

n2 = (1 + λ)n1 Θ(n−1/2
1) Θ(n1)

n2 = n1 + λnα
1 Θ(nα−3/2

1) Θ(n2−α
1)

Most notably, in the linear case, the algorithm is linear in n1. This is quite efficient.

6. The Multivariate Case

We can extend the allowable families of trees by looking at G.–W. trees with k types of vertices.
Now we have k probability laws and for each vertex the probability of a vertex of type i to have dj

children of type j is πi,d, where d indicates the collection of dj and the probability is independent
of all others, except for its ancestors. It is less clear how to verify the desired properties such as
periodicity and rationality.

Theorem 3. Let (x, u1, . . . , uk) be such that ui = Φ(x, u1, . . . , uk). The multi-type branching
process defined by the laws of progeny

πi,d =
xwi(d)ud1

1 · · ·u
dk
k

Φi(x, u1, . . . , uk)
attribute to each tree, of which the root is of type 1, a probability which depends only on its size.

7. Complications and Restrictions

We have already discussed some of the problems of implementing such an algorithm. However,
in the univariate case, they can be overcome as precise numerical evaluation is possible, and often
it is easy to calculate the singularities directly. In the multivariate case there is some difficulty to
verify that the rationality and non-periodicity requirements are met.

Bibliography

[1] Drmota (Michael). – Systems of functional equations. Random Structures & Algorithms, vol. 10, n̊ 1-2, ,
pp. 103–124. – Average-case analysis of algorithms (Dagstuhl, 1995).

