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1. Introduction

Binary search trees are widely used to store (totally ordered) data, and many parameters have
been discussed in the literature (the monograph of Mahmoud [6] gives a very good overview of
the state of the art). Starting from a permutation of {1, 2, . . . , n} we get a binary tree Tn with n
internal nodes such that the keys of the left subtree of any given node x are smaller than the key
of x and the keys of the right subtree are larger than the key of x. Usually it is assumed that every
permutation of {1, 2, . . . , n} is equally likely and hence any parameter of binary search trees may
be considered as a random variable.

Here we consider the height Hn which is the largest distance of an internal node from the root.
In 1986, Devroye [2] proved that the expected value EHn satisfies the asymptotic relation

(1) EHn ∼ c log n,

and it is also proved [1] that

(2)
Hn

c log n
→ 1 a.s.,

(as n→∞), where c = 4.31107 . . . is the (largest real) solution of the equation

(3)
(

2e
c

)c

= e.

Better bounds for the expected value were given by two completely different methods by Devroye
and Reed [3] and by Drmota [4]. Finally Drmota [5] and Reed [8, 9] proved the so-called Robson
conjecture

(4) VHn = O(1).

Reed [8, 9] was also able to obtain a very precise bound for the expected value:

(5) EHn = c log n− 3c
2(c− 1)

log log n+O(1).

Notice that properties analogous to (1) and (2) hold for the (dual) saturation level H ′
n with

constant c replaced by the other real solution of Equation (3) [1, 5, 6].
Here, the purpose is to obtain more precise information on the asymptotic behaviour of the

distribution of the height Hn. This will also lead to a perspective of improving (4) and (5). To this
end, we first need to understand the two main ideas. They are:
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1. an analytic approach, due to Drmota, of the generating function

Yk(z) =
∑
n≥0

P(Hn ≤ k)zn

2. Devroye’s connection between Binary Search Trees (bst) and Branching Random Walks
(brw), which allows to use the above analytic approach to a “close” model (brw), easier
to deal with. Moreover, the analytic approach is applied to the Random Bisection Problem,
considered as a brw with a continuous parameter.

This seminar is devoted to connect such methods to some facts and results. Very precise estimates
are shown to be consequences of rather natural conjectures.

2. Results and Conjectures

Following the analytic approach, the generating function

Yk(z) =
∑
n≥0

P(Hn ≤ k)zn

is a solution of the difference equation

(6)

{
Y0(z) = 1
Y ′

k+1(z) = Yk(z)2, Yk(0) = 1.

For
xk := Yk(1) =

∑
n≥0

P(Hn ≤ k),

it is shown in [4, 5] that xk is related to EHn by the following result.

Fact 1.
EHn = max { k | xk ≤ n }+O(1).

We also already noticed the following result by Reed [8, 9].

Fact 2.

EHn = c log n− 3c
2(c− 1)

log log n+O(1).

Together, Facts 1 and 2 give the following bounds:

c2α
kkβ ≤ xk ≤ c1αkkβ

where α = e1/c and β = 3
2(c−1) .

It follows that the following conjectures are quite natural.

Conjecture 1.
xk ∼ γαkkβ (k → +∞).

Conjecture 2.

lim
k→+∞

xk+1

xk
exists.

Assume for a while that Conjecture 2 is true,1 then the following theorem holds.

1Recently Conjecture 2 could be verified so that Theorem 1 is now an unconditioned result.
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Theorem 1. There exists some distribution function F (x) such that

(7) P(Hn ≤ k) = F ( log n− log xk) + o(1)

uniformly in k as n→ +∞.

Let us point out here that, if Conjecture 1 is true, there exists some distribution function F (x)
such that

(8) P(Hn ≤ k) = F

(
log n− 1

c
k − β log k

)
+ o(1)

uniformly in k as n→ +∞. The limit distribution F which appears in (7) and (8) can be understood
as a traveling wave.

As another consequences of Conjecture 1, precise estimates of the first and second moment of
the height are:

E(Hn) = c log n− 3c
2(c− 1)

log log n+ ∆1

(
c log n− 3c

2(c− 1)
log log n

)
+ o(1)

and

V (Hn) = ∆2

(
c log n− 3c

2(c− 1)
log log n

)
+ o(1)

where ∆1 and ∆2 are continuous, periodic functions with period 1.

There is an intimate relation of Random Binary Search Trees to Devroye’s Tree Model, resp.
a relation between a Binary Search Tree and a Branching Random Walk. Recall that in this
connection, the considered Branching Random Walk is defined by an infinite binary tree with
weights Ũ , equal to U or 1− U on left and right edges respectively (U denotes a uniform random
variable on [ 0, 1 ]). In this model, each node v of the tree has a weight

l(v) =
∏
e<v

Ũe.

Let the tree T̄n be defined by

T̄n :=
{
v
∣∣∣ l(v) ≥ 1

n

}
,

and let H̄n denotes the height of T̄n. Devroye has shown that the distribution of H̄n is “very close”
to that of Hn.

Let us see now why the the distribution of H̄n is close to that of Hn. We work in terms of the
Random Bisection Problem (which is a reformulation of H̄n): in that problem, an interval with
length x is randomly cut into two intervals with length x1 := Ux and x2 := (1 − U)x, where U is
uniformly distributed on [ 0, 1 ].

Let Pk(x, l) be the probability that all segments are less than l after k steps, and let

P̄k

(x
l

)
:= Pk

(x
l
, 1
)

= Pk(x, l),

then P̄k(x) looks like a wave, and is a solution of the following recursion:

P̄k+1(x) =
1
x

∫ x

0
P̄k(y)P̄k(x− y) dy.

By definition of Pk, H̄n, T̄n,

P̄k(n) = Pk

(
1,

1
n

)
= P

(
H̄n ≤ k

)
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so that the Random Bisection Problem appears as a generalized tree model with continuous pa-
rameter x:

T̄x =
{
v
∣∣∣ l(v) ≥ 1

x

}
, H̄x = height of T̄x.

For this generalized tree model, the analytic approach is close to that for Binary Search Trees and
it provides an analogy between Hn and H̄n: let

Ȳk(z) :=
∫ ∞

0
P̄k(x)e(z−1)x dx =

∫ ∞

0
P
(
H̄x ≤ k

)
e(z−1)x dx

then
Ȳ0(z) =

1
z − 1

(ez−1 − 1)

and

(9) Ȳ ′
k+1(z) = Ȳk(z)2.

For
x̄k := Ȳk(1) =

∫ ∞

0
P̄k(x) dx =

∫ ∞

0
P
(
H̄x ≤ k

)
dx

we have the following results.

Fact 1’.
E H̄n = max { k | xk ≤ n }+O(1) (n→∞).

Fact 2’.

E H̄n = EHn +O(1)

= c log n− 3c
2(c− 1)

log log n+O(1) (n→∞).

Both results imply
c̄2α

kkβ ≤ x̄k ≤ c̄1αkkβ

for the same constants α and β. Analogous conjectures are

Conjecture 1’.
x̄k ∼ γ̄αkkβ (k → +∞).

Conjecture 2’.

lim
k→+∞

x̄k+1

x̄k
exists.

Note that Conjectures 1 and 1’ on the one hand, and Conjectures 2 and 2’ on the other hand,
are equivalent. Admitting these conjectures, the following theorem can be deduced as well:

Theorem 2. If Conjecture 2’ is true,2 there exists some distribution function F̄ (x) such that

(10) P
(
H̄n ≤ k

)
= P̄k(n) = F̄ ( log n− log x̄k) + o(1)

uniformly in k as n→ +∞.
If Conjecture 1’ is true, there exists some distribution function F̄ (x) such that

(11) P
(
H̄n ≤ k

)
= P̄k(n) = F̄

(
log n− k

c
− β log k

)
+ o(1)

uniformly in k as n → +∞. The limit distribution F̄ which appears in (10) and (11) can be
understood as a traveling wave.

2... which has been verified
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Note that F (x) of Theorem 1 and F̄ (x) of Theorem 2 in fact coincide.

3. Sketch of Proof

To prove Theorem 1 (and similarly Theorem 2) it is necessary to get information on Ȳk(x), the
solution of Equation (6) (resp. of (9)). The method consists in considering an auxiliary function
Ỹk(x), related to a solution of the Retarded Differential Equation with a parameter α:

Φ′(u) = − 1
α2

Φ
(u
α

)2
, Φ(0) = 1,

by

Ỹk(x) := αkΦ
(
αk(1− x)

)
(k ∈ R).

The Retarded Differential Equation can be solved, because Φ is the Laplace transform of some
function Ψ

Φ(u) :=
∫ ∞

0
Ψ(y)e−uy dy

solution of the integral equation

yΨ
( y
α

)
=
∫ y

0
Ψ(z)Ψ(y − z) dz.

The existence and unicity of solutions of this integral equation, considered as a fixed-point equation,
come from a contraction method which applies only for values of parameter α between 1 and a
critical value α0 = e1/c = 1.26 . . .

The relation between the auxiliary function Ỹk(x) and the true function Yk(x) relies on a scaling:
define ek by

αek = xk,

then, locally around x = 1,

Yk(z) ∼ Ỹek
(x),

at least if Conjecture 2 is right!, i.e.,

lim
k→∞

xk+1

xk
= α.

Then, it remains to extract the coefficient with degree n in Yk(x)

P(Hn ≤ k) = [xn]Yk(x) = Ψ(n/xk) + o(1)

to get by comparison with Ỹek
(x), the asymptotics of Theorem 1:

P(Hn ≤ k) ∼ F ( log n− log xk)

with F (x) = Ψ( log x).
As a last remark, it is worth to connect the above objects, especially x̄k, to some heuristics

in statistical physics literature (see for instance [7]), where quite similar traveling waves appear.
There, x̄k is the front position, it increases as αkkβ (Conjecture 1’) and parameter α of the Retarded
Differential Equation is nothing but the velocity of the front wave.
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