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Abstract
This work lies within the framework of the great beat of animals in a square lattice: how
to construct some new classes of animals, as large as possible, with enough structure to be
exactly enumerable? It should be borne in mind that an animal is a finite connected set of
vertices of a lattice (e.g., the square lattice), defined up to a translation, and that we still
do not know the asymptotics of the number of animals with n vertices.

Our starting point is a correspondence, due to Viennot, between directed animals and
pyramids of dominoes. We define a (much) larger class of animals, in one-to-one correspon-
dence with some so-called connected domino tilings, and we proceed to their enumeration.

To this aim, we have to solve a functional equation, a variant of which gives the generating
functions of directed animals. The two models are however quite distinct: directed animals
have an algebraic generating functions, and a growing constant equal to 3, whereas our new
class of animals has a non D-finite generating function and a growing constant of 3.58.

We can say that we did half the journey until the animal Graal: their growing constant
is estimated to 4.06. . . (joint work with Andrew Rechnitzer).

One of the most celebrated open problems in combinatorics is the enumeration of animals (also
called polyominoes). A polyomino of area n is a connected union of n cells on a lattice (symmetries
are not taken into account: e.g., there are two polyominoes of area 2). Animals can be seen as
duals of a polyominoes, with each cell replaced by a vertex at its centre.

Figure 1. Polyominoes with square and hexagonal cells, and the corresponding
animals on the square and triangular lattices.

Since the 1950’s, combinatoricians and physicists (as animals are related to percolation models)
tried without success to get a nice formula for the number of animals of size n or to make their
asymptotics explicit.

Let an be the number of animals of size n on the square lattice. A concatenation argument due to
Klarner implies that an has an exponential growing rate, i.e., a1/n

n converges to a constant µ (called
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Model µ Nature of the GF Who solved it (first)
Rectangles 1 q-series obvious
Ferrers diagrams (partitions) 1 q-series Euler 1748
Stacks 1 q-series Auluck 1951, Wright 1968
Parallelogram 2.30... q-series Klarner & Rivest 1974
Directed convex 2.30... q-series Bousquet-Mélou & Viennot 1992
Convex 2.30... q-series Bousquet-Mélou & Fédou 1995
Bargraph (compositions) 2 rational obvious
Directed column convex 2.62... rational Moser, Klarner 1965
Column convex 3.20... rational Temperley 1956
Directed 3 algebraic Dhar 1982
Stacked directed 3.5 algebraic Bousquet-Mélou & Rechnitzer 2002
Multi directed 3.58... non D-finite Bousquet-Mélou & Rechnitzer 2002
General 4.06? ??? You?

Table 1. Some of the solved subclasses of square lattice polyominoes and their
growth constants.

source

b)a)

A polyomino is column-convex if its intersection
with any vertical line is connected; it is directed
if any cell can be reached from a fixed cell called
the source, by a North-East directed path that
only visits cells of the animal.

l.w. r.w. l.w. r.w.

Figure 2. A column-convex polyomino (a) and a directed polyomino (b). The
second line illustrates that replacing each vertex of an animal by a dimer transforms
a directed animal into a “pyramid” (a heap of dimers).

Klarner’s constant). Numerical studies suggest that an ≈ C 4.06n

n . The first 46 terms a1, . . . , a46

have been computed;1 it begins like: 1, 2, 6, 19, 63, 216, 760, 2725, 9910, . . . As a byproduct (via
Klarner’s concatenation argument), it implies that 3.9 < µ < 4.65.

As is usual, people tried to solve simpler problems which were more or less direct simplification of
the general model. Progress were done by adding some convexity or directedness constraints—see
Table 1.

1See Steve Finch’s website on constants at http://algo.inria.fr/bsolve/constant/constant.html for up-to-
date datas on the Klarner’s constant.



M. Bousquet-Mélou, summary by C. Banderier 9

P

P

Q Q

r.w.

Q
Q

Q
Q

Figure 3. The first line shows that a half-pyramid Q factorizes in smaller half-
pyramids. The second line shows that a pyramid P can be factorized in terms of
half-pyramids Q and a smaller pyramid.

The Schützenberger methodology (also called “the symbolic method”) classically gives the gen-
erating functions of combinatorial structures which factorize. For pyramids (heap of dimers), the
factorization in Figure 3 gives a system of functional equation P (x) = Q(x) + Q(x)P (x) and
Q(x) = x+ xQ(x) + xQ(x)2, solving it gives the generating functions of half-pyramids

Q(x) =
1− x−

√
(1 + x)(1− 3x)
2x

.

From this, the bivariate generating function of pyramids (x encoding the number of dimers and w
encoding the right width) is P (x,w) = Q(x)

(
1− uQ(x)

)−1. This gives µ = 3 for directed animals
(see Table 1), and also that their average width (which is given by twice the right width plus one)
is asymptotically 6

√
3πn.

We now define in the following figure two new classes of animals: stacked directed animals and
multidirected animals. (See examples on Figure 4.)

P1 P2 P3 P4 P5 P1 P3 P5P2 P4 P6

Figure 4. Each triangle represents a directed animal. In stacked directed animal
(left) each directed animal component, Pi lies below Pi−1, whereas in a multi-directed
animal (right) Pi lies below Pj for some j < i. So the right drawing is not a stacked
directed animal as P3 is above P2.
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We have already computed P (x, v), the generating function for pyramids. The generating func-
tion S(x,w, t) for stacked directed animals (x enumerates the number of dimers, w the right width
and t the number of sources) is algebraic and given by S(x,w, t) = t P (x,w)

1−tP (x,1)2
. This comes easily

from the functional equation

S(x,w, t) = tP (x,w) + tP (x,w)∂wS(x, 1, t)

which reflects the fact that a stacked animal is either a single pyramid or a pyramid with another
stacked animals “attached” below it. There are r ways to attach it, if r is the length of the
pyramid; this “attachement” (or “pointing”) is translated by a differentiation with respect to w in
the functional equation.

The generating function for multi-directed animals is

M(x) =
Q

(1−Q)
(
1−

∑
k≥1

Qk+1

1−Qk(1+Q)

) .
Consequently, M(x) is not D-finite;2 this comes from the fact that the zeroes of 1 − qn(1 + q)
accumulate on a part of the circle |q| = 1, whereas a D-finite function has only finitely many
singularities.

The generating function is in fact obtained by M(x) = C(x, x, 1), where C(x, y, w) is the gener-
ating functions of connected heaps (x encodes the number of dimers, w the width and y the size of
the rightmost column) and satisfies the following functional equation

C(x, y, w) =
uy

1− y
+

u

1− y
C

(
x,

x

1− y
, w

)
− wC(x, x, w) .

Iterating this recursive definition leads to

1 + C(x, y, w) =
(∑

n≥0

un

Fn(x)− yFn−1(x)

)
−
(∑

n≥1

un

Fn(x)

)(
1 + C(x, y, w)

)
which is equivalent to

(1) C(x, y, w) = −1 +
(∑

n≥0

un

Fn(x)− yFn−1(x)

)(∑
n≥0

un

Fn(x)

)−1

where Fn(x) stands the nth Fibonacci polynomial, defined by F0 = F1 = 1 and Fn = Fn−1−xFn−2.
It is interesting to note that from formulas similar to (1), one gets that some other generating

functions R(x, y, w) are non D-finite. The proof relies on the fact that these generating functions
involve ∑

n≥1

qn

1− qn
=
∑
n≥1

d(n)qn or
∑
n≥1

qn

(1− qn)2
=
∑
n≥1

σ(n)qn

where d(n) is the number of divisors of n and σ(n) the sum of the divisors of n, two well-known
functions of number theory. Evaluating these functions modulo 2 relates them to the generating
functions of square numbers

∑
n≥1 z

n2
, which is not rational (either as a lacunary series, either

by p-automatic considerations). But a series with integer coefficients and with radius 1, is either
rational or has the circle as natural boundary (Fatou–Pólya–Carlson theorems). So R(x, y, w) does
not have finitely many singularities and hence is not D-finite.

2Recall that a function F (x) is called D-finite whenever there are some polynomials pi(x) and an integer d such
that pd(x)∂dF (x) + · · · + ∂F (x) + p1(x)F (x) + p0(x) = 0. This is an important class of generating functions, very
well suited to computer algebra methods.
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Figure 5. Pictures of animals drawn uniformly at random amongst animals of
size 100 (Mireille’s zoo).
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From a prospective viewpoint, it is perhaps possible to extend this approach to more sophisticated
structures of animals (e.g., partially directed animals). The nature of the generating function of
general animals/polyominoes remains an open problem.

This small note is a summary of M. Bousquet-Mélou & A. Rechnitzer article [1], available online
at http://dept-info.labri.u-bordeaux.fr/~bousquet/.
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