Available online at the URL http://algo.inria.fr/seminars/.

# Multi-Variable sinc Integrals and the Volumes of Polyhedra

Jonathan M. Borwein CECM, Simon Fraser University (Canada)

October 22, 2001

Summary by Ludovic Meunier

### Abstract

This talk investigates integrals of the form

$$\tau_n := \int_0^\infty \prod_{k=0}^n \operatorname{sinc}(a_k x) \, dx$$

and their multi-dimensional analogues. These integrals are related to volumes of polyhedra, which allows to derive various monotony results of such integrals.

## 1. Introduction and Motivation

A conjecture stated that

(1) 
$$\mu := \int_0^\infty \prod_{k=1}^\infty \cos\left(\frac{x}{k}\right) \, dx < \frac{\pi}{4}.$$

Indeed,  $\mu \approx 0.7853\underline{80}$ , while  $\frac{\pi}{4} \approx 0.7853\underline{98}$  differs in the fifth place. The highly oscillatory integral of an infinite product of cosines (1) is connected to the integrals

$$\tau_n := \int_0^\infty \prod_{k=0}^n \operatorname{sinc}(a_k x) \, dx,$$

where  $\operatorname{sinc}(\cdot)$  is the *sine cardinal* function,<sup>1</sup> defined by

$$\operatorname{sinc}(x) := \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

Section 2 investigates the behavior of the integrals  $\tau_n$  as functions of n and exhibits a duality between the  $\tau_n$  and volume of polyhedra. This duality allows to derive various monotony results for the  $\tau_n$  and to extend the one-dimensional analysis to the multi-dimensional case, which is sketched in Section 3. Section 4 returns to the integral  $\mu$  and proves Conjecture (1). Some material contained in this summary is taken from [2].

<sup>&</sup>lt;sup>1</sup>See, e.g., http://mathworld.wolfram.com/SincFunction.html.

90 Multi-Variable sinc Integrals and the Volumes of Polyhedra

## 2. Fourier Transform and sinc Integrals

2.1. Fourier cosine transform. This section recalls some standard results about the Fourier cosine transform (FCT)  $[3, \S13]$ .

**Definition 1.** The FCT of a function  $f \in \mathcal{L}^2(-\infty, \infty)$  is defined to be the  $\mathcal{L}^2$ -limit  $\hat{f}$ , if it exists, as  $y \to \infty$  of the functions

$$c_y(x) := \frac{1}{\sqrt{2\pi}} \int_{-y}^{y} f(t) \cos(xt) dt.$$

**Property 1.** The function  $\hat{f}$  exists, belongs to  $\mathcal{L}^2$  and is unique, apart from sets of zero Lebesgue measure.

**Property 2.** If f is continuous over  $(-\alpha, \alpha)$  for some  $\alpha > 0$  and if  $\hat{f} \in \mathcal{L}^1(-\infty, \infty)$  then, conversely, for  $t \in (-\alpha, \alpha)$ 

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(x) \cos(xt) \, dt = f(t).$$

**Property 3** (Convolution). If  $\hat{f}_1$  and  $\hat{f}_2$  are the FCTs of even functions  $f_1$  and  $f_2$  in  $\mathcal{L}^2(-\infty,\infty)$ , then  $\hat{f}_1\hat{f}_2$  is the FCT of  $\frac{1}{\sqrt{2\pi}}f_1 * f_2$ , where \* denotes the convolution product over  $(-\infty,\infty)$ .

**Property 4** (Parseval). With the same notations as in Property 3 and provided that at least one of the functions  $f_1$  or  $f_2$  is real, then

$$\int_0^\infty f_1(t) f_2(t) \, dt = \int_0^\infty \hat{f}_1(x) \hat{f}_2(x) \, dx$$

The function  $\chi_a$ , for a > 0, is defined by

$$\chi_a(x) := \begin{cases} 1 & \text{if } |x| < a \\ \frac{1}{2} & \text{if } |x| = a \\ 0 & \text{if } |x| > a. \end{cases}$$

The FCT of  $\chi_a$  is  $a\sqrt{\frac{2}{\pi}}\operatorname{sinc}(ax)$  and, conversely, the FCT of  $a\sqrt{\frac{2}{\pi}}\operatorname{sinc}(ax)$  is equivalent to  $\chi_a$ . Note that the functions  $\chi_a$  and sinc are both even and real functions and they both belong to  $\mathcal{L}^1(0,\infty) \cap \mathcal{L}^2(0,\infty)$ , which fulfills the hypotheses of the above properties.

2.2. Duality. One first introduces the following notations

$$\sigma_n := \prod_{k=1}^n \operatorname{sinc}(a_k x), \qquad s_n := \sum_{k=1}^n a_k,$$
  
$$f_n := \frac{1}{a_n} \sqrt{\frac{\pi}{2}} \chi_{a_n}, \qquad F_0 := f_0, \qquad F_n := \left(\sqrt{2\pi}\right)^{1-n} f_1 * f_2 * \dots * f_n, \text{ for } n \ge 1.$$

By Property 3, one gets that  $F_n$  is the FCT of  $\sigma_n$ , and that  $\sigma_n$  is the FCT of  $F_n$ . Now, applying Property 4 leads to

(2) 
$$\tau_n = \int_0^\infty F_0(x) F_n(x) \, dx = \frac{1}{a_0} \sqrt{\frac{\pi}{2}} \int_0^{\min(s_n, a_0)} F_n(x) \, dx,$$

provided that  $\tau_0 = \pi (2a_0)^{-1}$ , which is a standard result [1, p. 314].

Consider the hyper-cube  $H_n$  and the polyhedron  $P_n$  defined by

$$H_n := \left\{ (x_1, \dots, x_n) \mid |x_k| \le 1, \ k \in [1, n] \right\},$$
$$P_n := \left\{ (x_1, \dots, x_n) \mid \left| \sum_{k=1}^n a_k x_k \right| \le a_0, \ |x_k| \le 1, k \in [1, n] \right\},$$

then (2) reads

(3) 
$$\tau_n = \frac{\pi}{a_0} \frac{1}{2^n a_1 \dots a_n} \int_0^{\min(s_n, a_0)} \chi_{a_1}(x) * \dots * \chi_{a_n}(x) \, dx = \frac{\pi}{2a_0} \frac{\operatorname{Vol}(P_n)}{\operatorname{Vol}(H_n)},$$

where Vol(·) denotes the volume. Equation (3) expresses a *duality* between the integrals  $\tau_n$  and the volumes of polyhedra. This duality is used to prove the following theorem.

**Theorem 1** (Monotony). For  $a_k \ge 0$ , then

$$\begin{aligned} 0 < \tau_n &\leq \frac{1}{a_0} \frac{\pi}{2} & \text{with equality if } a_0 \geq s_n, \\ 0 < \tau_{n+1} &\leq \tau_n < \frac{1}{a_0} \frac{\pi}{2} & \text{provided that } a_{n+1} \leq a_0 < s_n. \end{aligned}$$

2.3. Some puzzling integrals. Consider the family  $\tau_n$ , where  $a_k = \frac{1}{2k+1}$ . For  $k \in [0, 6]$ ,  $\tau_k = \frac{\pi}{2}$ . However,

$$\tau_7 = \frac{467807924713440738696537864469}{935615849440640907310521750000} \pi \approx 0.499999999992646\pi$$

According to Theorem 1, this result is explained by the fact that the value of the integrals  $\tau_n$  drops when the constraint  $\sum_{k=1}^{n} a_k x_k \leq a_0$  bites into the hyper-cube  $H_n$ . Indeed,  $\sum_{k=1}^{6} a_k < 1$ , but on the addition of the seventh term, the sum exceeds 1 and the identity  $\tau_k = \frac{\pi}{2}$  no longer holds. This behavior is illustrated in the case of dimension 2 by the following diagrams.



# 3. Multi-Dimensional sinc Integrals

Let  $a := (a_1, \ldots, a_m)$  and  $y := (y_1, \ldots, y_m)$  in  $\mathbb{R}^m$ . Define  $ay := \sum_{k=1}^m a_k y_k$  and  $\delta_a$  the Lebesgue measure restricted to  $\{x \in \mathbb{R}^m \mid x = ta, -1 \le t \le 1\}$ . For any integrable function f over  $\mathbb{R}^m$ ,  $\int_{\mathbb{R}^m} f(x) \delta_a(dx) = \int_{-1}^1 f(ta) dt$  and thus

(4) 
$$\int_{\mathbb{R}^m} e^{ixy} \delta_a(dx) = 2\operatorname{sinc}(ay).$$

More generally, with  $s_1, \ldots, s_n \in \mathbb{R}^m$  and the convolution measure  $\lambda = \delta_{s_1} * \cdots * \delta_{s_n}$ , Equation (4) becomes

$$F(y) := \int_{\mathbb{R}^m} e^{ixy} \lambda(dx) = 2^n \prod_{k=1}^n \operatorname{sinc}(s_k y).$$

Another version of Parseval's theorem yields the following theorem.

**Theorem 2.** With the same notations as above and with  $n \ge m$  and the constraint that the  $m \times m$  matrix  $(s_1, \ldots, s_m)$  is non-singular, then

$$\int_{\mathbb{R}^m} F(y) \prod_{k=1}^m \operatorname{sinc}(y_k) \, dy = \frac{\pi^m}{2^n} \int_{[-1,1]^m} \lambda(dy).$$

This theorem relates the volume of a polyhedra of dimension n with a m-dimensional sinc integral.

### 4. The Cosine Integrals Revisited

Invoking the factor theorem of Weierstrass [4, p. 137], one gets

sinc(x) = 
$$\prod_{k=1}^{\infty} \left( 1 - \frac{x^2}{\pi^2 k^2} \right)$$
 and  $\cos(x) = \prod_{l=0}^{\infty} \left( 1 - \frac{4x^2}{\pi^2 (2l+1)^2} \right)$ .

If one lets  $C(x) = \prod_{k=1}^{\infty} \cos\left(\frac{x}{n}\right)$ , it follows that  $C(x) = \prod_{k=0}^{\infty} \operatorname{sinc}\left(\frac{2x}{2k+1}\right)$ . By Theorem 1, where  $a_k = \frac{2}{2k-1}$ , one obtains

$$0 < \mu = \int_0^\infty C(x) \, dx = \lim_{n \to \infty} \int_0^\infty \prod_{k=1}^n \operatorname{sinc}(a_k x) \, dx < \frac{\pi}{4}.$$

which proves the conjecture stated in Equation (1).

#### **Bibliography**

- Apostol (Tom M.). Mathematical analysis. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1974, second edition, xvii+492p.
- [2] Borwein (David) and Borwein (Jonathan M.). Some remarkable properties of sinc and related integrals. The Ramanujan Journal, vol. 5, n° 1, 2001, pp. 73–89.
- [3] Titchmarsh (A.C.). The theory of functions. Oxford University Press, 1939, second edition.
- Whittaker (E. T.) and Whatson (G. N.). A course of modern analysis. Cambridge University Press, 1927, fourth edition.