Multi-Variable sinc Integrals and the Volumes of Polyhedra

Jonathan M. Borwein
CECM, Simon Fraser University (Canada)

October 22, 2001
Summary by Ludovic Meunier

Abstract

This talk investigates integrals of the form $$
\tau_{n}:=\int_{0}^{\infty} \prod_{k=0}^{n} \operatorname{sinc}\left(a_{k} x\right) d x
$$ and their multi-dimensional analogues. These integrals are related to volumes of polyhedra, which allows to derive various monotony results of such integrals.

1. Introduction and Motivation

A conjecture stated that

$$
\begin{equation*}
\mu:=\int_{0}^{\infty} \prod_{k=1}^{\infty} \cos \left(\frac{x}{k}\right) d x<\frac{\pi}{4} \tag{1}
\end{equation*}
$$

Indeed, $\mu \approx 0.7853 \underline{80}$, while $\frac{\pi}{4} \approx 0.7853 \underline{98}$ differs in the fifth place. The highly oscillatory integral of an infinite product of cosines (1) is connected to the integrals

$$
\tau_{n}:=\int_{0}^{\infty} \prod_{k=0}^{n} \operatorname{sinc}\left(a_{k} x\right) d x
$$

where $\operatorname{sinc}(\cdot)$ is the sine cardinal function, ${ }^{1}$ defined by

$$
\operatorname{sinc}(x):= \begin{cases}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Section 2 investigates the behavior of the integrals τ_{n} as functions of n and exhibits a duality between the τ_{n} and volume of polyhedra. This duality allows to derive various monotony results for the τ_{n} and to extend the one-dimensional analysis to the multi-dimensional case, which is sketched in Section 3. Section 4 returns to the integral μ and proves Conjecture (1). Some material contained in this summary is taken from [2].

[^0]
2. Fourier Transform and sinc Integrals

2.1. Fourier cosine transform. This section recalls some standard results about the Fourier cosine transform (FCT) [3, §13].
Definition 1. The FCT of a function $f \in \mathcal{L}^{2}(-\infty, \infty)$ is defined to be the \mathcal{L}^{2}-limit \hat{f}, if it exists, as $y \rightarrow \infty$ of the functions

$$
c_{y}(x):=\frac{1}{\sqrt{2 \pi}} \int_{-y}^{y} f(t) \cos (x t) d t
$$

Property 1. The function \hat{f} exists, belongs to \mathcal{L}^{2} and is unique, apart from sets of zero Lebesgue measure.

Property 2. If f is continuous over $(-\alpha, \alpha)$ for some $\alpha>0$ and if $\hat{f} \in \mathcal{L}^{1}(-\infty, \infty)$ then, conversely, for $t \in(-\alpha, \alpha)$

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(x) \cos (x t) d t=f(t)
$$

Property 3 (Convolution). If \hat{f}_{1} and \hat{f}_{2} are the FCTs of even functions f_{1} and f_{2} in $\mathcal{L}^{2}(-\infty, \infty)$, then $\hat{f}_{1} \hat{f}_{2}$ is the FCT of $\frac{1}{\sqrt{2 \pi}} f_{1} * f_{2}$, where $*$ denotes the convolution product over $(-\infty, \infty)$.
Property 4 (Parseval). With the same notations as in Property 3 and provided that at least one of the functions f_{1} or f_{2} is real, then

$$
\int_{0}^{\infty} f_{1}(t) f_{2}(t) d t=\int_{0}^{\infty} \hat{f}_{1}(x) \hat{f}_{2}(x) d x
$$

The function χ_{a}, for $a>0$, is defined by

$$
\chi_{a}(x):= \begin{cases}1 & \text { if }|x|<a \\ \frac{1}{2} & \text { if }|x|=a \\ 0 & \text { if }|x|>a\end{cases}
$$

The FCT of χ_{a} is $a \sqrt{\frac{2}{\pi}} \operatorname{sinc}(a x)$ and, conversely, the FCT of $a \sqrt{\frac{2}{\pi}} \operatorname{sinc}(a x)$ is equivalent to χ_{a}. Note that the functions χ_{a} and sinc are both even and real functions and they both belong to $\mathcal{L}^{1}(0, \infty) \bigcap \mathcal{L}^{2}(0, \infty)$, which fulfills the hypotheses of the above properties.
2.2. Duality. One first introduces the following notations

$$
\begin{aligned}
& \sigma_{n}:=\prod_{k=1}^{n} \operatorname{sinc}\left(a_{k} x\right), \quad s_{n}:=\sum_{k=1}^{n} a_{k}, \\
& f_{n}:=\frac{1}{a_{n}} \sqrt{\frac{\pi}{2}} \chi_{a_{n}}, \quad F_{0}:=f_{0}, \quad \quad F_{n}:=(\sqrt{2 \pi})^{1-n} f_{1} * f_{2} * \cdots * f_{n}, \text { for } n \geq 1 .
\end{aligned}
$$

By Property 3, one gets that F_{n} is the FCT of σ_{n}, and that σ_{n} is the FCT of F_{n}. Now, applying Property 4 leads to

$$
\begin{equation*}
\tau_{n}=\int_{0}^{\infty} F_{0}(x) F_{n}(x) d x \underset{\text { convolution }}{=} \frac{1}{a_{0}} \sqrt{\frac{\pi}{2}} \int_{0}^{\min \left(s_{n}, a_{0}\right)} F_{n}(x) d x \tag{2}
\end{equation*}
$$

provided that $\tau_{0}=\pi\left(2 a_{0}\right)^{-1}$, which is a standard result [1, p. 314].

Consider the hyper-cube H_{n} and the polyhedron P_{n} defined by

$$
\begin{aligned}
H_{n} & :=\left\{\left(x_{1}, \ldots, x_{n}\right)| | x_{k} \mid \leq 1, k \in[1, n]\right\}, \\
P_{n} & :=\left\{\left(x_{1}, \ldots, x_{n}\right)| | \sum_{k=1}^{n} a_{k} x_{k}\left|\leq a_{0},\left|x_{k}\right| \leq 1, k \in[1, n]\right\},\right.
\end{aligned}
$$

then (2) reads

$$
\begin{equation*}
\tau_{n}=\frac{\pi}{a_{0}} \frac{1}{2^{n} a_{1} \ldots a_{n}} \int_{0}^{\min \left(s_{n}, a_{0}\right)} \chi_{a_{1}}(x) * \cdots * \chi_{a_{n}}(x) d x=\frac{\pi}{2 a_{0}} \frac{\operatorname{Vol}\left(P_{n}\right)}{\operatorname{Vol}\left(H_{n}\right)}, \tag{3}
\end{equation*}
$$

where $\operatorname{Vol}(\cdot)$ denotes the volume. Equation (3) expresses a duality between the integrals τ_{n} and the volumes of polyhedra. This duality is used to prove the following theorem.

Theorem 1 (Monotony). For $a_{k} \geq 0$, then

$$
\begin{array}{ll}
0<\tau_{n} \leq \frac{1}{a_{0}} \frac{\pi}{2} & \text { with equality if } a_{0} \geq s_{n} \\
0<\tau_{n+1} \leq \tau_{n}<\frac{1}{a_{0}} \frac{\pi}{2} & \text { provided that } a_{n+1} \leq a_{0}<s_{n}
\end{array}
$$

2.3. Some puzzling integrals. Consider the family τ_{n}, where $a_{k}=\frac{1}{2 k+1}$. For $k \in[0,6], \tau_{k}=\frac{\pi}{2}$. However,

$$
\tau_{7}=\frac{467807924713440738696537864469}{935615849440640907310521750000} \pi \approx 0.499999999992646 \pi .
$$

According to Theorem 1, this result is explained by the fact that the value of the integrals τ_{n} drops when the constraint $\sum_{k=1}^{n} a_{k} x_{k} \leq a_{0}$ bites into the hyper-cube H_{n}. Indeed, $\sum_{k=1}^{6} a_{k}<1$, but on the addition of the seventh term, the sum exceeds 1 and the identity $\tau_{k}=\frac{\pi}{2}$ no longer holds. This behavior is illustrated in the case of dimension 2 by the following diagrams.

Volume $=$

Volume $=\square-2 \triangle$

3. Multi-Dimensional sinc Integrals

Let $a:=\left(a_{1}, \ldots, a_{m}\right)$ and $y:=\left(y_{1}, \ldots, y_{m}\right)$ in \mathbb{R}^{m}. Define $a y:=\sum_{k=1}^{m} a_{k} y_{k}$ and δ_{a} the Lebesgue measure restricted to $\left\{x \in \mathbb{R}^{m} \mid x=t a,-1 \leq t \leq 1\right\}$. For any integrable function f over \mathbb{R}^{m}, $\int_{\mathbb{R}^{m}} f(x) \delta_{a}(d x)=\int_{-1}^{1} f(t a) d t$ and thus

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} e^{i x y} \delta_{a}(d x)=2 \operatorname{sinc}(a y) \tag{4}
\end{equation*}
$$

More generally, with $s_{1}, \ldots, s_{n} \in \mathbb{R}^{m}$ and the convolution measure $\lambda=\delta_{s_{1}} * \cdots * \delta_{s_{n}}$, Equation (4) becomes

$$
F(y):=\int_{\mathbb{R}^{m}} e^{i x y} \lambda(d x)=2^{n} \prod_{k=1}^{n} \operatorname{sinc}\left(s_{k} y\right)
$$

Another version of Parseval's theorem yields the following theorem.
Theorem 2. With the same notations as above and with $n \geq m$ and the constraint that the $m \times m$ matrix $\left(s_{1}, \ldots, s_{m}\right)$ is non-singular, then

$$
\int_{\mathbb{R}^{m}} F(y) \prod_{k=1}^{m} \operatorname{sinc}\left(y_{k}\right) d y=\frac{\pi^{m}}{2^{n}} \int_{[-1,1]^{m}} \lambda(d y)
$$

This theorem relates the volume of a polyhedra of dimension n with a m-dimensional sinc integral.

4. The Cosine Integrals Revisited

Invoking the factor theorem of Weierstrass [4, p. 137], one gets

$$
\operatorname{sinc}(x)=\prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{\pi^{2} k^{2}}\right) \text { and } \cos (x)=\prod_{l=0}^{\infty}\left(1-\frac{4 x^{2}}{\pi^{2}(2 l+1)^{2}}\right) .
$$

If one lets $C(x)=\prod_{k=1}^{\infty} \cos \left(\frac{x}{n}\right)$, it follows that $C(x)=\prod_{k=0}^{\infty} \operatorname{sinc}\left(\frac{2 x}{2 k+1}\right)$. By Theorem 1, where $a_{k}=\frac{2}{2 k-1}$, one obtains

$$
0<\mu=\int_{0}^{\infty} C(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{\infty} \prod_{k=1}^{n} \operatorname{sinc}\left(a_{k} x\right) d x<\frac{\pi}{4}
$$

which proves the conjecture stated in Equation (1).

Bibliography

[1] Apostol (Tom M.). - Mathematical analysis. - Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1974, second edition, xvii+492p.
[2] Borwein (David) and Borwein (Jonathan M.). - Some remarkable properties of sinc and related integrals. The Ramanujan Journal, vol. 5, n 1, 2001, pp. 73-89.
[3] Titchmarsh (A.C.). - The theory of functions. - Oxford University Press, 1939, second edition.
[4] Whittaker (E. T.) and Whatson (G. N.). - A course of modern analysis. - Cambridge University Press, 1927, fourth edition.

[^0]: ${ }^{1}$ See, e.g., http://mathworld.wolfram.com/SincFunction.html.

