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Abstract

This talk investigates integrals of the form

τn :=
∫ ∞

0

n∏
k=0

sinc(akx) dx

and their multi-dimensional analogues. These integrals are related to volumes of polyhedra,
which allows to derive various monotony results of such integrals.

1. Introduction and Motivation

A conjecture stated that

(1) µ :=
∫ ∞

0

∞∏
k=1

cos
(x
k

)
dx <

π

4
.

Indeed, µ ≈ 0.785380, while π
4 ≈ 0.785398 differs in the fifth place. The highly oscillatory integral

of an infinite product of cosines (1) is connected to the integrals

τn :=
∫ ∞

0

n∏
k=0

sinc(akx) dx,

where sinc(·) is the sine cardinal function,1 defined by

sinc(x) :=

{
sin(x)

x if x 6= 0,
1 if x = 0.

Section 2 investigates the behavior of the integrals τn as functions of n and exhibits a duality
between the τn and volume of polyhedra. This duality allows to derive various monotony results for
the τn and to extend the one-dimensional analysis to the multi-dimensional case, which is sketched
in Section 3. Section 4 returns to the integral µ and proves Conjecture (1). Some material contained
in this summary is taken from [2].

1See, e.g., http://mathworld.wolfram.com/SincFunction.html.
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2. Fourier Transform and sinc Integrals

2.1. Fourier cosine transform. This section recalls some standard results about the Fourier
cosine transform (FCT) [3, §13].

Definition 1. The FCT of a function f ∈ L2(−∞,∞) is defined to be the L2-limit f̂ , if it exists,
as y →∞ of the functions

cy(x) :=
1√
2π

∫ y

−y
f(t) cos(xt) dt.

Property 1. The function f̂ exists, belongs to L2 and is unique, apart from sets of zero Lebesgue
measure.

Property 2. If f is continuous over (−α, α) for some α > 0 and if f̂ ∈ L1(−∞,∞) then, con-
versely, for t ∈ (−α, α)

1√
2π

∫ ∞

−∞
f̂(x) cos(xt) dt = f(t).

Property 3 (Convolution). If f̂1 and f̂2 are the FCTs of even functions f1 and f2 in L2(−∞,∞),
then f̂1f̂2 is the FCT of 1√

2π
f1 ∗ f2, where ∗ denotes the convolution product over (−∞,∞).

Property 4 (Parseval). With the same notations as in Property 3 and provided that at least one
of the functions f1 or f2 is real, then∫ ∞

0
f1(t)f2(t) dt =

∫ ∞

0
f̂1(x)f̂2(x) dx.

The function χa, for a > 0, is defined by

χa(x) :=


1 if |x| < a
1
2 if |x| = a

0 if |x| > a.

The FCT of χa is a
√

2
π sinc(ax) and, conversely, the FCT of a

√
2
π sinc(ax) is equivalent to χa.

Note that the functions χa and sinc are both even and real functions and they both belong to
L1(0,∞)

⋂
L2(0,∞), which fulfills the hypotheses of the above properties.

2.2. Duality. One first introduces the following notations

σn :=
n∏

k=1

sinc(akx), sn :=
n∑

k=1

ak,

fn :=
1
an

√
π

2
χan , F0 := f0, Fn :=

(√
2π
)1−n

f1 ∗ f2 ∗ · · · ∗ fn, for n ≥ 1.

By Property 3, one gets that Fn is the FCT of σn, and that σn is the FCT of Fn. Now, applying
Property 4 leads to

(2) τn =
∫ ∞

0
F0(x)Fn(x) dx =

convolution

1
a0

√
π

2

∫ min(sn,a0)

0
Fn(x) dx,

provided that τ0 = π(2a0)−1, which is a standard result [1, p. 314].
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Consider the hyper-cube Hn and the polyhedron Pn defined by

Hn :=
{

(x1, . . . , xn)
∣∣ |xk| ≤ 1, k ∈ [ 1, n ]

}
,

Pn :=

{
(x1, . . . , xn)

∣∣∣∣∣
∣∣∣∣ n∑
k=1

akxk

∣∣∣∣ ≤ a0, |xk| ≤ 1, k ∈ [ 1, n ]

}
,

then (2) reads

(3) τn =
π

a0

1
2na1 . . . an

∫ min(sn,a0)

0
χa1(x) ∗ · · · ∗ χan(x) dx =

π

2a0

Vol(Pn)
Vol(Hn)

,

where Vol(·) denotes the volume. Equation (3) expresses a duality between the integrals τn and
the volumes of polyhedra. This duality is used to prove the following theorem.

Theorem 1 (Monotony). For ak ≥ 0, then

0 < τn ≤
1
a0

π

2
with equality if a0 ≥ sn,

0 < τn+1 ≤ τn <
1
a0

π

2
provided that an+1 ≤ a0 < sn.

2.3. Some puzzling integrals. Consider the family τn, where ak = 1
2k+1 . For k ∈ [ 0, 6 ], τk = π

2 .
However,

τ7 =
467807924713440738696537864469
935615849440640907310521750000

π ≈ 0.499999999992646π.

According to Theorem 1, this result is explained by the fact that the value of the integrals τn drops
when the constraint

∑n
k=1 akxk ≤ a0 bites into the hyper-cube Hn. Indeed,

∑6
k=1 ak < 1, but on

the addition of the seventh term, the sum exceeds 1 and the identity τk = π
2 no longer holds. This

behavior is illustrated in the case of dimension 2 by the following diagrams.
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3. Multi-Dimensional sinc Integrals

Let a := (a1, . . . , am) and y := (y1, . . . , ym) in Rm. Define ay :=
∑m

k=1 akyk and δa the Lebesgue
measure restricted to {x ∈ Rm | x = ta, −1 ≤ t ≤ 1 }. For any integrable function f over Rm,∫

Rm f(x)δa(dx) =
∫ 1
−1 f(ta) dt and thus

(4)
∫

Rm

eixyδa(dx) = 2 sinc(ay).
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More generally, with s1, . . . , sn ∈ Rm and the convolution measure λ = δs1 ∗ · · · ∗ δsn , Equation (4)
becomes

F (y) :=
∫

Rm

eixyλ(dx) = 2n
n∏

k=1

sinc(sky).

Another version of Parseval’s theorem yields the following theorem.

Theorem 2. With the same notations as above and with n ≥ m and the constraint that the m×m
matrix (s1, . . . , sm) is non-singular, then∫

Rm

F (y)
m∏

k=1

sinc(yk) dy =
πm

2n

∫
[−1,1 ]m

λ(dy).

This theorem relates the volume of a polyhedra of dimension n with am-dimensional sinc integral.

4. The Cosine Integrals Revisited

Invoking the factor theorem of Weierstrass [4, p. 137], one gets

sinc(x) =
∞∏

k=1

(
1− x2

π2k2

)
and cos(x) =

∞∏
l=0

(
1− 4x2

π2(2l + 1)2

)
.

If one lets C(x) =
∏∞

k=1 cos
(

x
n

)
, it follows that C(x) =

∏∞
k=0 sinc

(
2x

2k+1

)
. By Theorem 1, where

ak = 2
2k−1 , one obtains

0 < µ =
∫ ∞

0
C(x) dx = lim

n→∞

∫ ∞

0

n∏
k=1

sinc(akx) dx <
π

4
,

which proves the conjecture stated in Equation (1).
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