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Abstract

An analytic study of linear ¢-difference equations leads to a simple derivation of some con-
nection formulae, generalizing the asymptotic expansion of the Bessel J,, functions.

1. Differential and ¢-Difference Equations

Linear differential operators are polynomials in x and 0, = d/dz. These operators can be
discretized using g-difference operators expressed in terms of ¢, z, and o, where o,(f)(z) := f(qz).
When ¢ — 1, (04 — 1)(f)(z)/(g — 1) tends to zf'(z). This discretization is not unique. It gives
rise to several generalizations of classical functions and identities relating them. C. Zhang’s work
is an analytic study of these operators, of the asymptotics of their solutions and the divergence of
their series expansions.

A simple example of a g-difference equation is given by (zo, — 1)y(z) = 0. For |¢| < 1 and
z € C* := C)\ {0}, a solution of this equation is the Jacobi function

Oy(z) := Y "™ D22 = (g5 )00 (=75 @)oo (— /%5 9)oo
nez

where the last equality is Jacobi’s triple product identity, using the notation
(4;¢)o0 = (1 = a)(1 — ag)(1 — ag®) --- .
The product form shows that ,(z) is analytic in C*, and that its set of zeroes is —q”.

Another important solution of the same equation is e4(z) := ¢"°8¢ 2108, 2=1)/2 " aqyivalent to 04(x)
when z — 0. In the asymptotic behaviour of solutions in the neighbourhood of irregular singular
points, the function e, plays the same role as the exponential in the differential case. Another
simple equation is (0, — z)y(z) = 0, which has ¢~ %8 a(logg z=1)/2 and 1/64(z) as solutions. As
opposed to the differential case, inverses of these analogues of the exponential are not obtained by
changing x into —z.

A complete classification of the possible formal local behaviours of solutions of linear g-difference
equations was obtained by Carmichael in 1912. For an equation of order m in o, with analytic
coefficients at the origin, there exists a family of m formal solutions, each of which is of the form

mj—1
(1) yi(@) = a"ieg " (2) Y (logg @) fiu(a),  G=1,...,m,

v=0
where 7; € C, k; € Q, m; € N*, and f;,(z) € C[[z'/4]] for some d € N*. Each of these can be
computed from the equation.
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2. Hypergeometric and ¢g-Hypergeometric Connection Formulae

The connection problem lies in expressing (the analytic continuation of) one of the above y;’s
that are defined at the origin as a linear combination in terms of a similar basis at another singular
point. There is no general method to compute “closed forms” for these constants, except in special
cases such as the hypergeometric case.

Hypergeometric series in the classical (differential) case are series F(z) = ), -qa(n)z™ such
that a(n + 1)/a(n) =: r(n) = P(n)/Q(n) is a fixed rational function in n. In terms of the shift
operator S, this means that the sequence a(n) cancels @(n) — P(n)S,,* from which it follows that
the generating series F' cancels the linear differential operator Q(z9;) — P(20;)z. Introducing the
roots of P and @), hypergeometric series are classicaly denoted

LU n
F (ala"'aa'p .’L'> .= (a’l)n (G’P)’n '%-_,
P bi,...,bq nzz:o(bl)n"'(bq)n n!
where (a)p, = a(a +1)---(a +n — 1). This series is convergent for ¢ > p and has only regular
singularities if and only if p = ¢ + 1.

The g-analogue of this function is known as the ¢, basic hypergeometric series. In this case the
ratio of two consecutive coefficients is a fixed rational function in ¢”. The general form is

n

s+1—r

Alyeee, Qp, L (al;Q)n"'(ap;Q)n _1\n,n(n—1)/2 n
o ras) > (anee e

5 (0130)n -+ (bs3 @)n

where (a;q)n = (1 —a)(1 —ag) -+~ (1 — ag"™").

A simple example is Heine’s 92¢1(a, b; ¢; ¢, ), which has Gauss’s o F1(«, 8;v;x) as a limit when
a=q% b=¢? c¢=¢q", and ¢ — 1. Heine’s function satisfies a second-order g-difference equation.
This equation has no irregular singularity (it is a Fuchsian equation). A general technique to
relate solutions of such equations at 0 and infinity in the classical hypergeometric case is based on
a Mellin—Barnes integral representation. This approach was extended to the g-difference case by
Watson in 1910, who found that for ab # 0,

(2)  2¢1(a,b;c;q,7) = Ci(z) 201(a, aq/c; aq/b; q, cq/abx) + Ca(x) 21 (b, bg/c; bg/a; q, cq/abx),

where
(b, ¢/a; 9)oo (a2, 4/ 4 §) oo _ (a,¢/b;q) o0 (b7, ¢/b7; )

) CQ(‘,I") - .

(¢;b/a; @)oo (, /73 ¢) o (¢;a/b; @)oo (, /%3 )0

This method is presented in detail in Slater’s book [4]. The connection “constants” C(z) and Ca(z)
are annihilated by o, — 1 and are uniform (they satisfy C(ze*™) = Cx(z)). Thus they are elliptic,
since when expressed in (u,7) defined by z = exp(2inu) and g = exp(—2in7) with S(7) > 0 they
are doubly periodic.

Ci(z) =

3. Jackson’s ¢g-Bessel Functions
Bessel functions are classically defined as solutions of the Bessel equation
(205 — v) (20, +v) + 2°) y(z) = 0.

When v ¢ Z, a basis of solutions is given by the Bessel J,(z) and J_,(z) functions, which can be
expressed in terms of the hypergeometric series by

(z/2)*"

Pl = @ )

oF (1,1; +v + 1; —2?/4).
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The Bessel equation can be derived from the differential equation of the o F} by confluence: this is
achieved by considering o Fy (v + 1/2, 3;2v + 1; /) and letting S tend to infinity. In this process,
the singularity at infinity becomes irregular.

Similarly, Jackson introduced in 1905 two g-analogues of the Bessel functions,

v+1. 2
() (z:q) = (&3 Doo (TVY Lt T
JIJ (.’,E,Q) (q,Q)oo (2) 2¢1 anaq 54, 4 )
(3) v+1.

T e = % <_> 0¢1( 'iq ,—xzq:q).

The classical J, function is recovered in two ways by letting ¢ tend to 1 in J,Sk) (m(l — q);q)
for k € {1,2}. The radiuses of convergence of the basic hypergeometric series (in ¢g) given here are

respectively finite for TN (provided |z| < 2) and infinite for T2,

These functions are solutions of two g-difference equations of order 2 in o, with p = /g that are
easily derived from (3). These equations can be seen as arising from the equation of the 2¢1 by
confluence, but it is not clear how to use this process in order to obtain a connection formula by a

limiting process from (2). As in the classical case, both J,Sk) and J(_ky) are independent solutions of
their respective g-difference equation, for £k = 1,2. The equations have a regular singularity at the
origin and an irregular singularity at infinity.

4. Derivation of Connection Formulae

Connection formulae between the series expansions (3) and the (unique) basis of formal solutions
at infinity of the form given by (1) generalize the classical asymptotic expansion

eIt 1 1 2% etz(2v+l) 1 1 2i
(@) Jy(#) = —F=—e"2F0 (—u + 5t 5 ;) VT ”2F0<‘” TyrTai _E> '

(A nice application of this formula is the derivation of an asymptotic expansion of the location of
the zeroes of J,(z); this generalizes to those of J,$2).)
We start with J,Sl) and its g-difference equation

(02 — (0" +p")op + (1 +2%/4)) y(z) = 0.
By changing z into 1/t and y(z) into z(1/t), the equation becomes
1
(1+ ™ 4t2)a - +p")op+1)2(t) =0.

The exponential part of the behaviour (see Eq. (1)) is sought in terms of £4(t) = 1/0,(—at), which
is cancelled by o, + at. The change of unknown function z(t) = £,(t) fo(t) leads to

1 —v
((1 + 4p4t2)a2pt20§ —at(p” +p~")op — 1) fa(t) =0

Thus, by choosing « such that o = 4p3, one gets an equation for f, which has power series solu-
tions. A further simplification is achieved by considering the “p-Borel transform” of the series fq:

(5) ga(T) 1= pfa Zapnn 1)/2n

n>0
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where a, are the coefficients of f,. By the commutation rule Bp(tmaf;) = pmm-1)/ 277”05*”81,,
Ja 18 solution of a two-term g¢-difference equation. This is easily solved to find
1

—ap’T;@)oo(—aP ™ T5@) 00
It follows that g, is meromorphic in C with (simple) poles at {—p*~2"/a, —p~*~2"/a} for n € N,
which implies that f, is an entire function.

In order to recover f, from g,, the p-Borel transform of (5) is reverted by means of a Hadamard
product of g, with 6,. This leads to a Cauchy integral representation from which a residue com-
putation yields the connection formula. The Cauchy integral is

fl) = = [ gamy(tn)

= - —,
211 |7|=r T

ga(T) = (

where r < min(|p”/al, [p™/a|). The only residues come from the poles of g,. The asymptotic be-
haviour of g, implies that this integral is equal to the sum of the residues and an actual computation
of these residues leads to

f (t) _ ep(_aqy/2t) ep(_aqiu/2t)

¢ (43 9)0 (07" 9) o0 (43 9) 0 (4”3 9) oo
where 2t = 1 and |z| < 2. With very little rewriting, this is the desired connection formula. The
limiting behaviour of this formula when ¢ — 1 is studied in [5].

The second family of g-Bessel functions is actually related to the first one by a relation discovered
by Hahn in 1949:

2¢1(0,0;¢" " q, —2*/4) + 2¢1(0,0;¢ "5 g, —2%/4),

T (@59) = (—2° /4 @)oo TS (w30), 2] < 2.
Another way of viewing the relation between these functions is through the p-Laplace transform
that sends z" to p™("~1/2z"_ Then the transform of the o¢; in the definition of J,Sl) is the g¢1 in

that of J,SQ). From there, a Cauchy integral representation follows and again a residue computation
gives the connection formula, thanks to extra considerations about the asymptotic behaviour of the
integrand.

5. Comments

It has been observed that the connection “constants” possess the nice property that they are
elliptic in the case of Heine’s function. This is a general phenomenon [3]. The formulae in the
g-world imply important identities (after all, Jacobi’s triple product can be seen as a connection
formula). Recent work by Changgui Zhang shows that the limiting behaviour of these g-connection
formulae when ¢ — 1 yields the Stokes phenomenon of the differential world.

Bibliography

[1] Andrews (George E.), Askey (Richard), and Roy (Ranjan). — Special functions. — Cambridge University Press,
Cambridge, 1999, xvi+664p.

[2] Gasper (George) and Rahman (Mizan). — Basic hypergeometric series. — Cambridge University Press, Cambridge,
1990, xx+287p. With a foreword by Richard Askey.

[3] Sauloy (Jacques). — Systeémes aux g-différences singuliers réguliers : classification, matrice de connexion et mon-
odromie. Annales de I’Institut Fourier, vol. 50, n° 4, 2000, pp. 1021-1071.

[4] Slater (Lucy Joan). — Generalized hypergeometric functions. — Cambridge University Press, Cambridge, 1966,
xiti-+273p.

[6] Zhang (Changgui). — Sur la sommabilité des séries entiéres solutions formelles des équations auz q-différences
linéaires et o coefficients analytiques. — Mémoire d’habilitation, Université de La Rochelle, 2000.



