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1. Introduction

The redundancy-rate problem of universal coding is concerned with determining by how much the
actual code length (representation of a word in a code) exceeds the optimal code length. Revisiting
the theme of his last year’s seminar talk [1], Szpankowski went into more detail explaining different
models for redundancy, and introduced the generalized Shannon code in order to solve the minimax
redundancy problem for a single memoryless source.

A code is defined as follows:

Definition 1. A code C, is a mapping from the set A" of all sequences of length n over the
alphabet A to the set {0,1}* of binary sequences.

Most of the time we use source models which specify probabilities for specific messages. For
these, P(z7) is the probability of the message =7, the code length of a message ] = ... zp, with
zi € A, in the code Cy, will be denoted by L(Cy,z7), and Hn(P) = — 3 ,n P(a7)log P(7) is the
entropy of the probability distribution, where log is taken to base 2.

2. Basic Results

A prefiz code or instantaneous code is a code in which no codeword is a prefix for another
codeword; in other words, if you present the codewords as a binary trie, the valid codewords are
only in the leaves (not in the internal nodes).

For prefix codes the following inequality holds:

Lemma 1 (Kraft’s inequality). For any prefiz code (over a binary alphabet), the codeword lengths
li, lo, ..., Iy, satisfy the inequality

m

do2h<

i=1

A related problem is to find out how many tuples [y, ..., [, exist where equality holds. This
has been tackled and solved by Flajolet and Prodinger [2]. Asymptotically, it grows as a¢™, where
a =~ 0.254 and ¢ ~ 1.794.

Another important result is Shannon’s classic lower bound on the average code length (see [3]):

Lemma 2 (Shannon). For any code, the average code length E[L(Cy, X7")] cannot be smaller than
the entropy of the source H,(P):

E[L(Cn, X1")] > Hy(P)
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Trivially, one can see that there must exist at least one z7 with
L(z7) > —log P(7).

A lemma by Barron deals with the individual lengths of the code words:
Lemma 3 (Barron). Let L(XT) be the length of a codeword in a code satisfying Kraft’s inequality,
where X' is generated by a stationary ergodic source. For any sequence of positive constants ap
satisfying Y, 27% < oo, the following holds:

P{L(X!) < ~log P(X]) — a,} <27,

From this we immediately get

L(XT) > —log P(XT) —an (almost surely).

3. Redundancy

Redundancy measures the distance to the optimal code state, reaching the lower bound given
by the entropy. Since there are different ways to define the “worst case,” we define three types of
redundancy: pointwise R, (Cy,P;z"), average R, (Cy, P) and maximal R*(Cy,, P):

Rn(Cn, P;21) = L(Cp, 27) + log P(z7) (= —an(a.s.)),
Rn(Cnap) = EX{‘ [Rn(cna,P;X{L)]
= E[L(Cy, XT)] — Ha(P),
R*(Cp,P) = max [Rn(Ch, P;3T)].
Zy

The redundancy-rate problem consists in finding the rate of growth of the corresponding minimax
quantities

R, (S) = minsup E [Rn(C'n, P; m?)] ,
Crn Pes

R}, (S) = min sup max[R,,(Cy, P; z7)],
Cn pes =7
as n — oo for a class S of source models.
There are also other measures of optimality, e.g. for coding, gambling, or predictions. For these,
the following functions, called minimax regret functions, are used:

7 = min sup Z P(z7)[L; + logsup P(z7)],
Cn pes o P

7y, = minmax|L; + logsup P(7)].
Crn o7 P

Note that r; = R;,. Sometimes, the maximin regret is of interest:

T = SUP minz P(z})[Li + logsup P(z7)].
Pes Cn " P

These functions are sometimes called the average minimax regret (7,), the maximal minimax
regret (7)), and the average maxmin regret (7,). One can interpret these functions as target
functions for the game theoretical problem of choosing L so that for all 7, the value of the function
gets as good as possible, that is, —logsup P(z7).

In the following, we will only look at the redundancy functions.
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4. Precise Maximal Redundancy

In 1978, Shtarkov proved the following bounds for the minimax redundancy:

g (Y- sup Plat) ) < Bi(S) < tog (3 sup Plat) ) + 1

PeS Pes
z? zy

We want to find a precise result for R} (S). We start with the easier problem of finding the
optimal code for maximal redundancy for a known source P

R, (P) = wmin R*(Cy,P).

We already know that for the average redundancy of one known source

the Huffmann code is optimal—indeed, it is designed so as to solve this optimization problem. For
the maximal redundancy problem we introduce a new code, the generalized Shannon code.

In the ordinary Shannon code, the length of its symbol in the code for a given P is [l/P(x?)]
In the generalized Shannon code, on the other hand, we set the length to be |1/P(z7)] for some
symbols 27 € £ and [1/P(z7)] for the others in such a way that Kraft’s inequality holds. For
non-dyadic codes (dyadic ones fulfill R} (P) = 0), we sort the probabilities P(z):

0. < (~logp1) < (~logps) < -+~ < (~logpap) <1 (where {z) = — |z])

and choose jy to be the maximal j such that Kraft’s inequality still holds:

j-1 A"
Zpig(—logm) + Zpig(—bgm)—l <1
i=0 i—j

Then R; (P) =1 — (—logpj,) and the generalized Shannon code with £ = {1,..., o} is optimal.
Now we generalize to systems of probability distributions S. Let

X suppes P(z]
Vlat) = Ey;beAnZEUSPPe(s%(y?)'
Then
R(S) = Ri(@) +log 30 supPlah))
apedn PES
with
R(Q") =1 - (—logg;,)
as above.

If we now take the generalized Shannon code that minimizes the maximal redundancy, we get
for a sequence generated by a single memoryless source, for n — 0o, and o = log lp%p irrational:

” loglog 2
Rn (Pp) =

g T o) = 0.5287+ o(1).
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5. Average Minimax Redundancy

In the simple case where S consists of one distribution P, the computation of Rff is the Huffman
problem:

H _ : n ()

From known results (where we have R ~ R?), we conjecture:

Conjecture 1. Under certain additional conditions, we have, as n — oo,

R, =R, +0(1) = log( > sup P(x?)> +0(1).
TP e A" Pes

6. Average Redundancy for Particular Codes

For single memoryless sources, we have explicit results for n — oo for some codes. In particular,
we have for the Huffman code

B % — ﬁ if « irrational,
"2 - L ((Mng) — 1) — (M(1 — 27H/M)) o= (MM if o = N

for the Shannon code
if « irrational,

- % (MnB)—3) fa= %,
and for the generalized Shannon code

Rn:

N[ D[

R, = g —2In2 + o(1) =~ 0.113705639.

For more basics and in-depth knowledge regarding analytic information theory, the interested
reader is referred to Szpankowski’s book [4].
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