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Abstract

In the 1960’s, Malgrange made use of D-module theory for studying linear systems of
PDEs [2]. Several aspects of this approach, now called algebraic analysis, have then been
made effective in the 1990’s, owing to the extension of the theory of Grébner bases to rings
of differential operators. Correspondingly, algorithms have also been implemented in several
systems. Recently, the introduction of algebraic analysis to control theory has allowed to
classify linear multidimensional control systems according to algebraic properties of associ-
ated D-modules, to redefine their structural properties in a more intrinsic fashion, and to
develop effective tests for deciding these structural properties [3, 6, 7, 8, 9, 10, 12, 14].

1. From Linear Multidimensional Control Systems to Algebraic Analysis

A control system relates the state z of a physical process with an external command u and some
output y. Each of u, , and y is a vector of functions of the time ¢, and the system describes their
evolution with ¢. Several classes of such systems can be represented by matrices with coefficients
in a ring of operators. Sample classes are the following:

1. Kalman systems are first-order linear (ordinary) differential systems

i = Az + Bu, y = Cz + Du,

where A, B, C, and D are matrices with real entries [5]. For example, RLC circuits can be
described by Kalman systems.

. Polynomial systems are higher-order differential systems expressed without the help of any
state variable, in the form

P(d/dt)y(t) + Q(d/dt)u(t) = 0.

Here P and () are matrices with coefficients that are scalar linear differential operators with
real coefficients [5]. For example, a harmonic oscillator commanded by a force is described by
a second-order polynomial system. By Laplace transform, an equivalent formulation of (1) is

P(s)j(s) + Q(s)i(s) = 0;

the matrices P and () are now matrices of polynomials in s with real coefficients [5].
. Differential-delay systems with constant delays are a generalization common to Kalman sys-
tems and polynomial systems by introducing the constant-delay operators d; defined by
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(6:F)(t) = f(t —t;) for some real t;. The generalized forms are
T (s
E(t) =Y Aw(t —t;) + Bult —t;),  y(t) =Y Ciw(t —t;) + Dyu(t — t,),
i=0 1=0

and
P(d/dt,é1,...,6;)y + Q(d/dt,é1,...,0;)u =0,
respectively. A typical occurrence of delay is when transmitting a signal u through a channel.
4. Multivariate linear differential systems with real coefficients appear frequently to describe
physical phenomena, like electromagnetism, (linear) elasticity, hydrodynamism, and so on
7, 8, 12].

In each case, the column vector ¢ = (y,z,u)” satisfies R¢ = 0 for a (rectangular) matrix R
with coefficients in some ring A. Thus, we henceforth consider a linear control system as defined
by a matrix R with coefficients in an entire ring A. To give simple examples, the matrix forms
corresponding to Kalman and polynomial systems respectively are

0 A-d/dtld B
R:(Id i D) ad  R=(P Q).

In these differential cases, the ring A is R[d/dt] or a multivariate generalization, but more general
rings of coefficients are also considered in place of R in applications, like the ring R(¢) of rational
function, or the ring C°°(I) of infinitely differentiable functions over some real interval I. In
the equivalent formulation by Laplace transform or in the mixed differential-delay situation with
constant coefficients, the ring is isomorphic to the polynomial ring R[s] or a multivariate analogue.
Here again, more general rings of functions often appear in applications, like: R[s,exp(—s)], for
situations related to the wave equation; or the ring Hyo (C,.) of complex-analytic functions bounded
in the right half complex plane C; (Hardy space) and its subring RH, (C;. ) of real rational functions
with no pole on the right half complex plane, for the study of the stability of some distributed
systems [11].

Several structural properties of systems are all-important in control theory. An observable of a
control system is any scalar function of its command u, state x, and output y and of their derivatives
up to a certain order. An observable is called autonomous if it satisfies a non-trivial PDE. A control
system is called controllable if no observable is autonomous. The study of structural properties of
a system turns out to lead to linear algebra: controllability and observability are related to various
notions of primeness of the linear maps

z+— Rz and z— zR;

in the polynomial systems case, stability is related to poles and zeroes of the system, that are
invariant factors of the matrix R; similarly with the existence of generalized Bézout identities and
flatness of a control system; etc.

By associating an A-module M to the matrix R, another interpretation of the structural proper-
ties is in terms of module-theoretic and homological properties of M (torsion, torsion-free, reflexive,
and projective modules; extension and torsion functors). In fact, a full classification of modules by
homological algebra methods translates into a classification of linear control systems.

2. Duality Between Differential Operators and D-Modules

Let us turn to the formal theory of PDEs [13]. Starting with a naive viewpoint on differential
operators (so as to avoid the formalism of jet bundles), we introduce formally exact sequences of
differential operators. For each k, let F* denote the algebra of functions in k variables, and consider
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a differentiel operator D from F™ to F! (of finite order). Given € F™, the necessary conditions
for the existence of £ € F™ such that D& = n are called compatibility conditions of D; they take
the form Dyn = 0 for some differential operator D;. Writing Dy = D, we have D1 o Dy = 0. When
D1 encapsulates all compatibility conditions, the sequence

2 plo By gl

of differential operators is called formally ezact (at Fj,). Formally exact sequences can always be
extended (to the right) into longer sequences, so that denoting the solution set of D = Dy in F™
by ©, we obtain a formally exact sequence

050 Fr 2R po2yph By pia .

(at © and each F'*) where the first two maps denote inclusions. Under technical conditions (regu-
larity and involutivity), the formal theory of PDEs proves the existence of a finite formally exact
sequence for D, in the sense that F'» = 0 from some n on, by exhibiting a canonical, formally exact
sequence

(2) 050 =kerDy—» FP R po 2y ph 3 plo . Py plr 5 ¢

called the Janet sequence of D, in which each (non-zero) D; is of order 1 (and involutive) for i > 1,
and r is the number of derivatives.

A dual, more algebraic counterpart to this differential viewpoint is in terms of ezact sequences of
D-modules. To this end, we now view each D; as defined by an [; x [;_1 matrix R; of multivariate
linear differential operators in

A=R(zy...,z;)[01,-..,0]
(We set [ = m.) In terms of matrices,
Di =R;- = ({ = Rif),

so that R;;1R; - = 0. We then consider the maps - R; from Al to A-'  whose elements are
viewed as row vectors. To start with, the map - Ry defines an algebraic representation of a generic
solution ¢ the PDE system Dyé = 0 in the following way. Let (eq,...,en) be the canonical basis
of A™ and consider the maps
(3) 0 M =A"/AlORy & A™ £ plo,
where 7 denotes the canonical projection m(v) = v + Al Ry. The cokernel

M = coker(- Ry) = A™ /A R,
of - Ry contains the announced generic solution: setting

& =m(e) =e + AlORo,

we get Dpé = ERy = 0. Other members of M correspond to linear combinations of the &; and their
derivatives, i.e., to the observables defined above. We now proceed to follow up with the next D;’s.
A sequence

LS 5L
of linear maps (between modules) is said to be ezact (at L') if imu = kerv. (Thus (3) is exact at
M and A, .) It can be shown that any Janet sequence (2) gives rise to the exact sequence

(4) 0 M &A™ Foplo Joph F2pb A g
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(at M and each Al*). Here, - R;;1R; = 0 by exactness. Since A has no zero divisor, this means
that R;11R; = 0. The sequence (4) of (left) D-modules is called a free resolution of M: it encap-
sulates the obstruction of M to be free (as the module ker 7 = im( - Rp)), then the obstruction
of ker 7 to be free (as the module ker( - Ry) = im( - Ry)), etc. (A module is called free when it is
isomorphic to some A", whence the name “free resolution.”)

3. Parametrization and Controllability

A problem dual to the search of compatibility conditions is, for a given differential equation
DE =0, to determine whether the solutions can be parametrized by certain arbitrary functions
which, in physical systems, play the role of potentials. In other words, the problem is to determine
whether there exists another operator

D_y:F'-t - Fh

whose compatibility conditions are described by D = Dy, i.e., to look for a formally exact sequence
pl-r 25t gl D gl

In this situation, for any ¢ € F' the existence of 7 € F!-1 satisfying D_1m = ¢ is equivalent to
the fact that & solves the differential equation Dyé = 0, and so D_; “parametrizes”—in the usual
sense—all its solutions.

The existence of a parametrization has a nice application to optimal command: assume one needs
to minimize a cost function provided by the integral fOT F(t) dt of an observable F' of some system D).
The optimization problem is then to minimize over all tuples ¢ = (y, z,u)” of functions constrained
by Dpé = 0. On the other hand, once the solutions ¢ are given by a parametrization £ = D_qm, the
optimization problem reduces to the non-constrained problem of minimizing the integral [ G(t) dt
of a new observable G of D_; over unconstrained = [12].

To study the control-theoretic properties of the differential operator D, starting with the existence
of a parametrization, we in fact study the module-theoretic properties of M, which in turn are
derived from the study of the right D-module defined by

(5) Al-1 B8 plo 5 N = coker(Ry - ) = Al /RyAl-* — 0

(recall that [_y = m and compare with (3)). The key ingredient to be used comes from linear
algebra: dualization, which maps a left A-module L to the right module homa (L, A) of A-linear
applications from L to A. Correspondingly, any linear map L = L’ induces a map from the dual
of L' to the dual of L: to A\ € homy (L', A), one associates A ou € homy (L, A). This takes a simple
form when the modules are free and of finite rank (i.e., L = A™ and L' = A!, viewed as left modules
of row vectors). Indeed, the linear map wu is just the application of an m x | matrix U: u = - U.
Elements y € homy (A*, A) are defined by their values on the canonical basis (e;) of A* by

u= - (H(el)’ . ,/l(elc))Ta

so that the dual of A* is isomorphic to A¥ (now viewed as a right module of column vectors). In

this setting, the dual of a map A™ K Al is Am £ Al The same ideas apply mutatis mutandis for
the dual of right modules.
To search for a parametrization, one thus extends the exact sequence (5) into an exact sequence

R_1-

Al-2 5 Al By ale o Ny,
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An algorithm for this purpose will be given in Section 5. By dualization (i.e., application of the
homy (-, A) functor), it becomes a sequence

R_ .
A2 E Al Al homy (N, A) 0
of left D-modules that is usually no longer ezact. In particular, we may well have ker(- R_1) strictly
larger than im( - Ry). Upon forgetting the map - Ry and prolonging - R_; into
Al-e E gl B gl
we obtain an “exact” representation of ker(- R_;) as im( - Rj). It can be proved that the quotient
im( - Rp)/im(- Ro) C M
is the torsion module t(M) of M, i.e., the set of all its members m for which there exists a non-zero
scalar ¢ € A such that am = 0. Thus we have obtained that a (linear) control system system
is controllable if and only if its associated module M of observables is torsion-free, which can be

tested algorithmically. Moreover, a basis for the module ¢(M) of autonomous elements is obtained
from the rows of R}, (that are elements of im( - Ry))), viewed modulo im( - Ry).

4. More Structural Properties of Control Systems as Extension Modules
Other structural properties of D will be described in terms of the extension modules of N, a
central tool in homological algebra. Consider a free resolution
R_pn- R_nti-  R_o R_y- :
(6) e R SR = U ey U R U LN VN
(as obtained, for example, with the algorithms of Section 5). This is an exact sequence of right
D-modules. By dualization it becomes a sequence
-R_,, -R_,, ‘R_ ‘R_ .
(7) o E Al TR LS Al N Al E A homy (N, A) 0
of left D-modules that, again, is usually no longer exact. By dropping homa (N, A) from (7), we
obtain another non-exact sequence, but of free modules only,
R A =y U ey U L3 I
Its defects of exactness are encapsulated by its cohomology sequence, that is to say, by the quotients
ker( . R_,)/ im( . R—i+1)'

An all-important fact is that this family depends on N only, and not of the choice of a free
resolution (6). This motivates the notation

ext’ (N,A) = ker(- R ;)/im(- R ;1)

for extension modules (with in particular extQ (N, A) = ker(- Ry) = homy (N, A)).

The nullity or non-nullity of the ext®’s provides with the classification of modules in Theorem 1
below; in turn this classification provides with the classification of control systems in Theorem 3
below. Here are two more module-theoretic notions missing to state Theorem 1. A module L is
projective whenever there exists a module L’ such that L & L' is free; it is reflezive whenever it is
isomorphic to the dual of its dual through the linear map

€ : M — homy (homy (M, A), A)
defined by
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Then, a free module is always projective, a projective module always reflexive, and a reflexive
module always torsion-free. (For modules over a principal ideal, these notions coincide; for modules
over a multivariate polynomial ring with coefficients over a field, free and projective are equivalent,
a theorem by Quillen and Suslin.)

The following theorems [1, 4] make the link between properties of a module and the nullity of
the extension modules of its transposed module.

Theorem 1 (Palamodov, Kashiwara). For the modules M and N defined by (3) and (5), we have:
1. M is torsion-free if and only if ext} (N, A) = 0;
2. M is reflexive if and only if ext}(N,A) = ext? (N, A) = 0;
3. M is projective if and only if ext} (N,A) = .- = ext} (N,A) = 0.

Theorem 2 (Palamodov, Kashiwara). Let M and N be the two modules defined by (3) and (5).
Then there exists an eract sequence

0— M — APY — AP2 — ... — APr
if and only if exti (N,A) =0 fori=1,...,r.

We finally obtain the following classification of linear control systems, which admits some refine-
ments in the case of differential operators with constant coefficients, i.e., matrices with entries in
]R[Bl,. cey 87‘] CA [7, 8, 12]

Theorem 3. For a control system defined by the differential operator D = R+ where R is an l X m
matriz with | < m and entries in

A= R(.’El ...,x,)[(‘)l,...,(')r],

introduce the two left D-modules M = coker( - R) and N = coker(R -) of the maps between the free
modules A™ and A'. Then:

1. if M has torsion, the control system has autonomous elements, and in the event R has
constant coefficients and full row module, it has no primality property;

2. M is torsion-free if and only if ext}k(N, A) = 0. In this case, the control system is control-

lable, and in the event R has constant coefficients and full row module, it is prime in the

sense of minors, i.e., there is no common factor between the minors of R of order [;

M is reflezive if and only if extl(N,A) = extZ(N,A) = 0;

4. in the event R has constant coefficients and full row module, and if

exty(N,A) =--- =ext|, '(N,A) =0  while  extl(N,A) #0,

the control system is weakly prime in the sense of zeroes, i.e., all minors of order | simulta-
neously vanish at finitely many points only;
5. M is projective if and only if

exti (N,A) = --- = ext (N,A) = 0.

In this case the control system has an inverse generalized Bézout identity, and in the event
R has constant coefficients and full row module, it is prime in the sense of zeroes, i.e., all
minors of order | simultaneously vanish at no point;

6. if M is free, the control system is flat and has direct and inverse generalized Bézout identities.

w

Further intermediate situations, ext}(N,A) = --- = extf"}(N,A) = 0 and ext(N,A) # 0,
correspond to further intermediate primeness conditions (described in terms of the dimension of
the algebraic variety defined by the [ X [ minors of R).



A. Quadrat, summary by F. Chyzak 111

5. Grobner Basis Calculations for Compatibility Conditions and Parametrizations

The whole machinery of the previous sections crucially bases on prolongations of exact sequences.
A point that is important in view of computations is that these can be obtained by Groébner basis
calculations for free modules over A.

The prolongation of a map A™ & Al into an exact sequence A™ £ A E AP is done in the
following fashion. Let (e1,...,ey) and (fi,..., fi) be the canonical bases of A™ and Al, respectively,
and denote the ith row of R = (r; ;) by n;. Thus n; = Z;nzl rij€ej. Prolonging the map amounts

to finding non-trivial relations Zé:l s;n; = 0. Now introduce the submodule Z of A" generated
by the formal linear combinations f; — n;. We contend that computing a Grobner basis for this
module and for a term order that eliminates the e; results in linear combinations 25:1 sifi € Z,
each of which corresponds to a relation between the 7;. Additionally, any relation can be obtained
as a linear combination of the relations thus obtained.

In effect, consider an element z = Eézl sifi € Z; thus Zﬁzl s;m; is in Z and is a combination
Zé:l Ai(fi —ni), which is only possible, in view of the coefficients of the f;, if the A; are zero, thus

if Zé:l s;1; = 0; the converse property is also true. Since the Grébner basis calculation precisely
computes a finite generating set, say of k elements, for all the z’s free of the e;, it suffices to consider
each of those k elements as a row, and to glue them in column to obtain a new matrix S = (S; ;)

such that the sequence A™ £ AL E AR is exact.

Now, existing packages often contain facilities to compute Grobner bases for left modules only;
some of our computations require to deal with right modules. A last ingredient, adjunction, enables
one to turn any left module into a right module, and vice versa, in a way that preserves the exactness
of sequences. Indeed, the adjoint map P P defined by associativity from the rules z; = =,
9y = —0;, and (PQ)” = QP, is an (anti)automorphism of the algebra A which extends to matrices
by mapping itself to the entries of the transpose matrix. Thus, for example, the exact sequence (5)
of right D-modules of columns in Section 3 is replaced with the exact sequence

Alfl 'ﬂl Alo - ]\7 = coker( . RO) —0

of left D-modules of lines, for the purpose of explicit calculations.
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