The problem addressed here is the covering time of random walks on a graph satisfying ``self-avoiding'' properties. Appealing to the combinatorics of heaps of cycles, the author derives explicit expressions of the laws for several algorithms related to loop-erased random walks (and thus to spanning trees and Hamiltonian cycles samplings), Lukasiewicz walks, and taboo random walks.
|
(g)= |
|
Pxi-1xitxi-1xi. |
|
|
(H)= |
æ ç ç è |
|
|
(-1)k |
|
(C1)... |
|
(Ck) |
ö ÷ ÷ ø |
-1 = |
|
|
|
(H)= |
|
. |
|
|
(H)= |
|
. |
E |
æ ç ç è |
|
tijNij, g |
ö ÷ ÷ ø |
= |
|
. |
D0(t)=D-1(t)=1, Dk(t)=Dk-1(t)- |
|
pnt (p-1t)n Dk-n-1(t). |
|
= constant . |
E |
æ ç ç è |
|
tijNij, T |
ö ÷ ÷ ø |
= |
|
E |
æ ç ç è |
|
tijNij, C |
ö ÷ ÷ ø |
= |
|
. |
E |
æ ç ç è |
|
tijNij, H |
ö ÷ ÷ ø |
=det(Id- |
|
) |
|
|
. |
|
£ E | (W)£ |
|
|
. |
|
(P)q|P|-1dq. |
http://dimacs.rutgers.edu/~dbwilson/exact/
.This document was translated from LATEX by HEVEA.