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Abstract
In this talk, Amir Dembo considers random walks on Z? and presents a proof of the Erdds—
Taylor conjecture related to frequently covered points. The Kesten—Révész conjecture on
the covering time of the two-dimensional torus Z2 = Z?/nZ? is also solved. These results
are a common work of Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni.

1. Introduction

Let (X,) be a simple random walk on Z? and T, (z) = Z?Zl 1{x;=¢) be the number of visits
to z before time n. Let T)¥ = max 72 Ty (z) be the number of visits to the most visited point. The
Erdés—Taylor conjecture asserts that

T 1
(1) lim —"— = —, almost surely.
n—oo (logn)? 7
Erdés and Taylor [7] proved the upper bound 1/7 and a lower bound 1/(47). The main result of
the talk is that the Erdés—Taylor conjecture is true.

Let (X;) be a simple random walk on the two-dimensional torus Z2 = Z?/nZ?. Consider T (z) =
min{ j > 0| X; =z }, the time to attain the point z for the first time and
Tn = ma}g T(x)a

T€L3,

the covering time of the torus. The Aldous-Lawler conjecture asserts than

(2) nli)%o (nlz-#)? = %, in probability.
Kesten, Révész, Lawler, and Aldous proved an upper bound 4/7 (see [1, Corollary 25, Chapter 7))
and a lower bound 2/7. A related question is the Kesten-Révész conjecture for the simple random
walk on Z2 (see [4]).

The proofs for the upper bounds rely on the second moment method, the approximation of
random walks by Brownian motions, and an underlying tree structure for the occupation of small
disks by a Brownian motion. We give here a sketch of the proofs; see [4, 5] for complete proofs.

2. The Second Moment Method

Janson gives a short account of the second moment method in [2]. Basically, we consider a
sequence of non-negative random variables X, and we want to estimate P(X, > 0). The second
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moment method asserts that if

Var(X, EX?
(3) % — 0, or equivalently, (EX:)2 =1 (as m — 00),
then
(4) P(X, >0) — 1.

The method is frequently used in the context of random graphs; for example, this method proves
the existence of a Hamilton cycle in random graphs satisfying suitable conditions.
The second moment method is a consequence of the Chebyshev inequality,

1
P(|X|>1t) < t—2E(X2).
As a consequence of the latter,

P(XZO)SP(\X—MIEM)SV%@a

for y = EX.

3. Proof of the Erdés—Taylor Conjecture

3.1. Upper bound. By definition, the truncated Green function G, (z,y) is the expectation of
the number of passages at y in n steps, when starting from z.
We have

Gu(0,0) = Y B (1px,z0p) = Do P(X; = 0) ~ loin'
j=0 J=0

(See Feller [8, p. 361].) Applying [3, Theorem 8.7.3] for the renewal sequence u, = P(X, = 0), we
deduce that for large n, and fixed small § > 0,

(1 —-9)r

P(X;#0forj=1,...,n-1) < og n

This implies by the strong Markov property that

< e—aw(logn)(l—é) _ n—(l—&)aw.

(1 . (5)7‘{' a(logn)?
logn )

(5) P (T,(0) > ar(logn)?) < (1 —

We now consider the disk of center zero and radius n(!79/2. The probability that the random walk
exits this disk before time n tends to zero as n tends to infinity, and the number of points of Z2
inside this disk is close to 7n{!*%. From Equation (5), we then get

(6) P% <P (ma,x ‘Xz| > n(1+6)/2> + 7Tn(1+5),n—(1—5)a7r’
0<i<n

where P2 = P(T > a(logn)?). The first term of the right member of Equation (6) vanishes as
n tends to infinity. Therefore, applying the Borel-Cantelli lemma to the subsequence P, for
o > 1/m, and using interpolation for all n, we have P (im 7T}y > ar(logn)?)) — 0. This gives an
upper bound 1/7.
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3.2. Lower bound. We can try to adapt the proof from the upper bound and use the second
moment method. Let D(z,7) be the disk of center z and radius r and

In= ), Y7 )2 8008m)2}
z€D(0,/n)
Adapting the proof of the upper bound (Equation (6)) gives EZ, ~ n!=#7). Therefore,
EZ? 1 Y

A AN

e e ne T (elns st
vy T 2 2€D(0,y/n)

and Sy = Y P(Tu(z) > Blogn)’) P(Tuly) > Blogn)?).
z£y€D(0,/n)

A naive approach would say the following: the number of summand in ¥, , is O(nQ(l_ﬂﬂ)) while it
is only O(n'=#™) in ;. Therefore, for 8 < 1/, EZ2/(EZ,)? — 1 and P(T* > L(logn)?) = 1

1

e
almost surely. However, Erdés and Taylor [7] show that the correlation structure between points z
such that P(T,,(z) > B(logn)?) is too strong to get this result. They obtain an upper limit 1/(4r).

We move in the following section to a tree model to overcome this difficulty.

Modelling by a (toy) tree problem. We! con- 0

sider a complete binary tree B,, of height m
and a (nearest neighbor) random walk X start-
ing from the left-most leaf a, with probability
1/3 of choosing any direction when being at an m
internal node. In this model, the starting point

a and the root 0 respectively represent the origin

(0,0) and the boundary of a “disk” of radius m

on Z2. Let L,, be the set of leaves of B,,. We

consider Tj,(x), the time spent at leaf = before a o
hitting the root 0, and

T = T,
its maximum over all leaves.
Let us denote by 0,1,2,...,a = m the nodes of the ray going from the root 0 to a and let PY
denote probability for walks starting from node y. We consider

H, = Hy(u) = » PY(X spends time k at a before hitting 0) u".
u>0

For any node i of the ray (0,a), and for any node y of the subtree rooted at the right child of 4, the
probability of k visits to a before hitting 0 of the walk starting from y is the same as if the walk
starts from ¢; this implies H, = H;. This last result is true for all 7 from 1 to m — 1.
We can therefore consider only the nodes of the ray (0, a), which provide the set of equations
_H H 1 _ Her | Hp  Hi Hin—2 (I +u)Hp 1

H - H
1=3 gty 3 3 3 3

(2§k§m—2), Hm—1:

IThe elementary proof leading to Equation (7) was not presented by the speaker and is due to the authors of the
summary.
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Solving yields

l><—1 —~—, and Hl(u):m—l—(m—2)u
m 1—(1—a)u

The random variable T, (a) therefore has a geometric distribution with mean m — 1, which induces
(for large m)

(7) Ho(u) = Hpy =

m—(m—1)u

1 mN\ am

P (T (a) > am?) = ((1 — —) ) ~e ™ and P(TF > am?) < e @mm = ¢~(a-log2)m
m

This implies the same upper bound as precedently (up to the change of model).

We now consider a variation of the second moment method. We fix some K large. We denote
by z-ray the ray from the root 0 to a leaf z and N;(z) counts the number of excursions from level ¢
to level 7 + 1 on the ray . We define the z-ray as a-successfull if

Ni(z) ~ ai®, for i=0,K,2K,...,K [%J .
We have

P(Nik(z) ~ a(i + K)* | Ni(z) ~ 0i®) ~ e"®® = P(z-ray is a-successfull) ~ e~ ™.

We now have
P(z-ray and y-ray are a-successfull) ~ e 2emear(z.y)
where 7(z,y) is the depth of the first common ancestor of z and y. This induces a reduction of

variance. Considering now the random variable Z,, defined by

Zm = Z 1{w—ray a-successfull}»
TELp,
we have
m/K

EZTZn e(aflog 2)Ks

(EZp,)?
when first m and then K tend to infinity. There is no obvious way to adapt this result to the
standard random walk, but it is possible to adapt it to the planar Brownian motion that we denote
w = (wy).

—1 for a<log2,

s=1

Define 6 as the first time where the Brownian
motion w hits the circle of radius 1 and py (A)
as the occupation time of a subset A of the disc
D(0,1) until this time. We have

0 =min{t | |w| =1}

0
and ug’(A):/ 14 (wy)dt. 0
0

The Perkins—Taylor conjecture states for the
Brownian motion that

2
. W(D(x,e ak -
(8) lim sup L(’z)) = 2. excursions
0iz1<1 €* (loge)

8
A~
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We shall in a first time sketch a proof of this conjecture and apply then the KMT approximation
theorem of the Brownian motion by the standard random walk.

Sketch of proof for the Perkins—Taylor conjecture. In the following, let dD(z,r) be the boundary
of the disk D(z,r).

The proof of the upper bound of the conjecture follows the same line as for the standard random
walk. When considering the lower bound, the difficulty relies again in the correlation structure.

Let ¢, = e * and define a point = of D(0,1) as k-successful if the number of excursions of
the Brownian motion between 0D(z,¢;) and dD(z,ey1) is ak? for fixed a. We remark that if =
is successful, the time spent at the ball D(z, e, 1) is ak?e? ~ ae?(loge)?, where € = ¢, 1, with
probability close to 1.

KMT approzimation theorem. The Komlés—Major-Tusnddy (KMT) approximation theorem [9]
states that for each n it is possible to construct a random walk {X}}}_, and the Brownian motion
{w¢}o<i<1 on the same probability space so that for any d > 0 and any 7 > 0

\/iS
W /n — % k

(The original one-dimension KMT approximation has been extended to the multivariate case by
Einmahl [6]).

Note that the Brownian motion between two successful points z and y before reaching the
boundary may again be modelized by a tree structure, and that the same technique as for trees
works once more (with many technical issues).

(9) lim P ( max

n—00 k=1,...,n

> 5n”_1/2> =0.

Application of the KMT approzimation theorem. The proof follows by considering the lattice
points inside the circle {z : [v/2z — y| < v/n(1 + 26)e, } whose number is less than

gn(l +26)3¢2.

4. Covering Time of the Torus

First, we once again consider the “toy” problem
of the covering time of the binary tree B,,. Let
X = (X,) be the first neighbor random walk
starting from the left son a of the root, and con-

m  sider hits to z, the leftmost leaf. P¥ again refers
to walks starting at point x.

4.1. Upper bound. From Section 3.2 we get

1
P%(X hits z before 0) =1 — H1(0) = —.
m

x

This implies that

1A\N
P%(X does not cover z during first N visits to 0) ~ (1 - 2—) .
m



126  Cover Time and Favourite Points for Planar Random Walks

Let I1° be the probability that the random walk starting at zero does not cover the binary tree B,,
during N visits to 0. We have

1\V
m° < 2™ <1 — 2—) so that m’ -0 for N =2(1+ 6)m?log2.
m

The time needed for N visits to the root is 2T N; this implies that
P°(X does not cover By, before time 2(1 + &) log 2 x m*2™*1) — 0.

4.2. Lower bound. A ray z is called successful if the number of excursions from level ¢ to level 1+1
in the ray is a(m —4)2. Dembo et al. apply a second moment analysis to the successful rays to show
that, with probability one, before 2(1 — §)m? log 2 visits to the root, there are points which are not
covered. Then, the time needed to visit the root that many times is about 2(1 — §)m?(log 2)2™*1.
To solve the standard random walk problem on Z?, Dembo et al. first solve the equivalent problem
for the Brownian motion on the torus T2, where T? is identified with the set (—1/2,1/2]2.
Let T (z,€) denote the time needed by the Brownian motion to enter the ball D(z,¢),

T(z,e) =inf{t >0 | w; € D(z,¢) }, and C.= sup T(z,e).
z€T?2

Therefore, C, is the minimum time needed for the Brownian motion W; to come within € of each
point of T?. Equivalently, C, is the amount of time needed for the Wiener sausage of radius € to
completely cover T2. Dembo et al. [4] prove that

i C 2

lim — = ==, almost surely.

«—0 (log €) ™
Using the KMP strong approximation theorem again provides the result for the standard random
walk on T2.
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