Principle:
- Trees are recursive structures
- Algorithms on trees are naturally recursive
- Translate recursive definitions into equations over o.g.f.
- Conclude by means of analytic combinatorics
Bibliography

[31] PF, JMS: A complexity calculus for classes of recursive programs over tree structures. (1981)
Basics on trees (cf. B. Sedgewick’s talk)

Simple families of trees (Meir & Moon): \(T = \sum_{\omega \in \Omega} \omega(T,...,T) = \Omega(T) \), where \(\Omega \) is a finite set of operators \(\omega \) of various arities \(\delta(\omega) \).

Let \(\Phi(u) \) be the enumerative polynomial of \(\Omega \): \([u^n]\Phi(u) = \text{card}\{\omega \in \Omega|\delta(\omega) = n\} \); then the o.g.f. \(t(z) \) of \(T \) satisfies: \(t(z) = z\Phi(t(z)) \).

Theorem(M&M): Under very general conditions the number of trees of size \(n \) satisfies, with \(\rho = 1/\Phi(\tau) \) and \(\tau\Phi'(\tau) = \Phi(\tau) \):

\[
t_n = [z^n]t(z) = \sqrt{\frac{\Phi(\tau)}{2\pi\Phi''(\tau)}} \rho^{-n}n^{-3/2}(1 + O(1/n)).
\]

Proof: Track the first singular point on the real positive axis, which is a branching point of order 2. Then apply the Darboux method.

N.B.: All this process can be automated (cf. B. Salvy’s talk)
PL-trees: Programming on trees

Procedures, Functions
Conditionals: if cond then ... else ...
Conditional iterations: for i=range while cond do ... od

Primitive operations on trees:
root(X) -> label of the root of tree X
deg(X) -> arity of the root of tree X
for 1 ≤ i ≤ deg(X), X[i] -> i-th root subtree of X:
X = root(X)(X[1],...,X[deg(X)])
tests on label, arity

Example:
function equal(X,Y:T)
if root(X)<>root(Y) then assign(false) else assign(true);
for i:=1 to deg(X) while assign(equal(X[i],Y[i])) do nil od fi
EXAMPLE

PATTERN-MATCHING IN TREES

- Binary trees
 \[B = \cdot + \text{binary symbol} \]
 \(\uparrow \)
 \text{leaf}
 \(\times \)

- Pattern: A binary tree \(P \)

- Root occurrence: \(T \) is obtained from \(P \) by grafting binary trees to leaves of \(P \)

- Occurrence
 \[T = \]
Algorithm

```
root? (I, T) =
    if I = x then true
    elseif T = x then false
    elseif root? (I_left, I_left)
        then root? (I_right, I_right)
    else

occ? (I, T) = root? (I, T); if I ≠ x then occ? (I_left, I_left)
    else occ? (I_right, I_right)
```
From the program to its complexity

Idea: Associate to instructions, blocs, constructs, o.g.f. to capture the running time complexity!
Extension of combinatorial constructs (cf. B. Sedgewick)

\(\tau A(X_1, X_2, \ldots, X_m) \): cost of running \(A \) on \(X_1, X_2, \ldots, X_m \) of sizes \(n_1, n_2, \ldots, n_m \)
consider \(\tau A(z_1, z_2, \ldots, z_m) = \sum_{|X_1|=n_1, \ldots, |X_m|=n_m} \tau A(X_1, \ldots, X_m) z_1^{n_1} \ldots z_m^{n_m} \)
which represents the cumulative costs of running \(A \) over all possible inputs, indexed by their sizes

In the same spirit for programs (functions) with boolean result, consider characteristic o.g.f.
\(\chi A(z_1, z_2, \ldots, z_m) = \sum_{|X_1|=n_1, \ldots, |X_m|=n_m} A_{\text{true}}(X_1, \ldots, X_m) z_1^{n_1} \ldots z_m^{n_m} \)

Challenge: translate the constructors and basic operations
\(A = C(B_1, B_2, \ldots, B_k) \) \(\Rightarrow \)
\(\tau A = \Gamma(\tau B_1, \tau B_2, \ldots, \tau B_k; \chi B_1, \chi B_2, \ldots, \chi B_k) \)
\[A = B_1; B_2 \rightarrow \tau A(z) = \tau B_1(z) + \tau B_2(z) \]

\[A = B(X[i]) \rightarrow \tau A(z) = z\tau B(z)\Psi(t(z)), \text{ with } \Psi(u) = \Phi(u)/u \text{ and variants in case of equality between subtrees...} \]

\[A = \text{if } Q \text{ then } B \text{ else } C \rightarrow \tau A(z) = \tau Q(z) + \tau B(z|Q) + \tau C(z|\neg Q) \]

\[A = \text{for } i \text{ do } B(X[i]) \text{ od } \rightarrow \tau A(z) = z\tau B(z)\Phi'(t(z)) \]

copying a tree \(\rightarrow \tau\text{copy}(z) = zt'(z)\)

and also: conditional iteration, characteristic functions, etc.
Generating series for costs can be computed recursively on the pattern structure (e.g. counting cost 1 for a generalized test)

\[\tau_{\text{root}}(z) = B(z) = \sum_{t \in B} 1.2^t \]

\[\tau_{\text{root}}(\frac{z}{z^2}) = B(z) + z \cdot \tau_{\text{root}}(\frac{z}{z^2}) \cdot B(z) \]

\[+ z \cdot B(z) \cdot \tau_{\text{root}}(\frac{1}{z}) \]

\[= 3B(z) - 2 \]

\[\tau_{\text{root}}(\frac{z}{z^2}) = z \cdot B(z) = B(z) - 1 \]

\[\tau_{\text{root}}(\frac{z}{z^2}) = B(z) + 2 \cdot \tau_{\text{root}}(\frac{z}{z^2}) \cdot B(z) \]

\[+ z \cdot \tau_{\text{root}}(\frac{z}{z^2}) \cdot \tau_{\text{root}}(\frac{1}{z}) \]

\[= (5 - 3z)B - 4 \quad 4.74 \]

\[\tau_{\text{root}}(\frac{z}{z^2}) = (5 - 2z)B - 4 \quad 4.12 \]

\[\tau_{\text{root}}(\frac{z}{z^2}) = (7 - 7z - z^2)B - 6 + 2z \quad 5.316 \]
Complexity of iteration over subtrees

\(A(X) = B(X); \) for \(i = 1..\text{deg}(X) \) do \(A(X[i]) \) od (the mapboth of Lisp)

Theorem:
Under very large analytic conditions, if the coefficients of the complexity descriptor of \(B \),
\(b_n \sim c.n^\alpha \rho^{-n} \) for some constants \(c \) and \(\alpha \leq 1/2 \), then the average complexity of \(A \)
\(\bar{\tau}_{an} \sim c.\theta \frac{\Gamma(\alpha-1/2)}{\Gamma(\alpha)} n^{\alpha+1/2} \)

Proof: from the true nature of the singularity and the basic asymptotics of the o.g.f. \(t(z) \) for trees; translating the program, we get the equation:
\(\tau a(z) = \tau b(z) + z\tau a(z)\Phi'(t(z)) \) from which
\(\tau a(z) = \tau b(z).zt'(z)/t(z) \)
TOP-DOWN RECURSION

Formal derivation (generalized)

\[S = \text{set of symbols} \quad \text{constants, operators, variables...} \]

\[D = \text{set of derivation rules} \]

\[T = \begin{array}{c}
T_1
\vdots
T_k
\end{array} \]

\[D(T) = \begin{array}{c}
\text{header} \\
\text{# copies} = \alpha(\#) \\
\text{# derived subtrees} = \beta(\#)
\end{array} \]

Equations for the family of trees

\[T_r = \sum_{\Delta \in S^*} \alpha \left(\frac{T_r}{T} \right) \]

\[f(3) = \sum_{\Delta \in S^*} \beta \left(\sum_{\Delta \in S^*} \right) \]
Complexity of Differentiation algorithms

Algebraic expressions with $+, -, x, \sqrt{}, /$

Thm: The average running time of standard differentiation is $O(n^{3/2})$ compared to a $O(n^2)$ worst case behaviour.

If sharing of subexpressions is allowed then the average running keeps linear.

The complexity calculus applies more generally to generalized tree transducers, specified along the same lines; 4 types of average behaviours are possible:
- linear
- sesquilinear
- quadratic
- exponential
Size of the derived trees ≈ cost of derivation

\[\text{trans} \left(\alpha(T.1, \ldots, T.m) \right) = \eta \left(\alpha \right) \]
\[+ \sum \alpha \left(\alpha \right) i \left(T.i \right) \]
\[+ \sum \beta \left(\alpha \right) i \text{trans} \left(T.i \right) \]

\[\text{trans} \left(\beta \right) = \sum_{T \in \mathcal{T}} \text{trans} \left(T \right) \beta \left(T \right) \]

Using "complexity calculus" rules

\[\text{trans} \left(\beta \mid T.\text{root} = 2 \right) = \]
\[\eta \left(\beta \right) \cdot \beta \cdot \left(f \left(\beta \right) \right)^{\nu \left(\beta \right)} \]
\[+ \alpha \left(\beta \right) \cdot \beta^2 \cdot f' \left(\beta \right) \cdot \left(f \left(\beta \right) \right)^{\nu \left(\beta \right) - 1} \]
\[+ \beta \left(\beta \right) \cdot \beta \cdot \text{trans} \left(\beta \right) \cdot \left(f \left(\beta \right) \right)^{\nu \left(\beta \right) - 1} \]

\[\text{trans} \left(\beta \right) = \beta \cdot E \left(f \left(\beta \right) \right) + \beta \cdot f' \left(\beta \right) \cdot A \left(f \left(\beta \right) \right) \]
\[1 - \beta \cdot B \left(f \left(\beta \right) \right) \]

\[E \left(\omega \right) = \sum \eta \left(\omega \right) \omega^{\nu \left(\omega \right)} \]
\[A \left(\omega \right) = \sum \alpha \left(\omega \right) \omega^{\nu \left(\omega \right) - 1} \]
\[B \left(\omega \right) = \sum \beta \left(\omega \right) \omega^{\nu \left(\omega \right) - 1} \]
Analytic study

\(\hat{f} \) has its dominant singularity in \(z = \rho \in \mathbb{R}^+ \) and locally

\[
\hat{f}(z) = \tau + \mathcal{O} \left(1 - \frac{\rho^2}{z} \right)^{\frac{1}{2}} + \text{s.o.t.} \quad \tau = \hat{f}(\rho)
\]

\[
\hat{f}'(z) = \tau' + \mathcal{O} \left(1 - \frac{\rho^2}{z} \right)^{-\frac{1}{2}} + \text{s.o.t.}
\]

numerator \(= \rho^2 \alpha^{\prime} \left(1 - \frac{\rho^2}{\rho^2} \right)^{-\frac{1}{2}} + \text{s.o.t.} \)

denominator \(\} \) depends on \(B(\tau) \) !? \(\hat{\phi}'(\tau) \)

\(B \neq \text{constant} \)
- \(\text{trans (z)} = \frac{\rho^2 \alpha \gamma'}{1 - \rho B(\tau) \rho} \left(1 - \frac{\rho^2}{\rho^2} \right)^{-\frac{1}{2}} + \text{s.o.t.} \)
- \(\text{trans (z)} = \frac{\rho^2 \alpha \gamma'}{-\rho B(\tau) \rho} \left(1 - \frac{\rho^2}{\rho^2} \right)^{-\frac{1}{2}} + \text{s.o.t.} \)
- \(\text{trans (z)} = \frac{\rho^2 \alpha \gamma'}{-\rho B(\tau) \rho} \left(1 - \frac{\rho^2}{\rho^2} \right)^{-\frac{1}{2}} + \text{s.o.t.} \)

\(\text{singularly (pole) in } z = \omega < \rho \)

\(B = \text{constant} \)
- \(\text{trans (z)} = \rho^2 \alpha \gamma' \left(1 - \frac{\rho^2}{\rho^2} \right)^{-\frac{3}{2}} + \text{s.o.t.} \)
More algorithms

Tree compatibility: returns the greatest common root part of X and Y; average cost is $O(1)$ (compare to naive string matching)

Tree matching: searching a motif in a tree, at all positions; average cost is $O(n)$ the constant depending on the motif’s shape

Tree simplification: applying $t - t = 0$ syntactically; average cost is linear in the input size

Further developments (by the AofA community): recursive tree simplification, boolean expressions, unification, higher order differentiation, rewriting systems, etc.

Limiting laws can also be derived in a systematic way
Tree compaction

How much space can be saved by sharing systematically the identical subtrees of a given binary tree?

Complete binary tree of height h has size $n = 2^{h+1} - 1$ and after compaction has size $h + 1$.
Right comb of height h has size $n = h + 1$ and is not changed by compaction.

Theorem: The average size of a tree of size n after compaction is $O(n/\sqrt{\log \log n})$.

Comment: such a result cannot be obtained directly by the complexity calculus! a weaker version along these lines gives $o(n)$.
Automating the process

by P. Flajolet, B. Salvy, P. Zimmermann
Dérivation formelle

```plaintext
type expression = zero | one | x
                      | plus(expression,expression)
                      | times(expression,expression)
                      | expo(expression);
plus,times,expo,zero,one,x = atom(1);

function diff(e:expression):expression;
case e of
  plus(e1,e2) : plus(diff(e1),diff(e2));
  times(e1,e2) : plus(times(diff(e1),copy(e2)),
                       times(copy(e1),diff(e2)));
  expo(e1) : times(diff(e1),copy(e));
  zero : zero;
  one : zero;
  x : one
end;

function copy (e:expression):expression;
measure plus,times,expo,zero,one,x : 1;

#analyze"diff";
Average cost for diff on random inputs of size n is:

\[
\begin{align*}
  & \frac{1}{2} \quad \frac{1}{2} \quad \frac{3}{2} \\
  & (\frac{126}{1} + 6 \pi) \quad n \\
  & \frac{1}{2} \quad \frac{1}{3} \quad \frac{3}{4} \quad \frac{3}{2} \\
  \text{with} \quad (-1 + 2 \pi) \quad \frac{6}{1} \quad 23
\end{align*}
\]

\[19\]
Work in progress...