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Principle:

— Trees are recursive structures

— Algorithms on trees are naturally recursive

— Translate recursive definitions into equations over o0.9.f.

— Conclude by means of analytic combinatorics



Bibliography

[15] PF: Analyse en moyenne de la détection des arbres partiels.(1978)

[28] PF,JMS: On the analysis of tree-matching algorithms.(1980)

[31] PF,JMS: A complexity calculus for classses of recursive programs over tree
structures. (1981)

[43] PF,JMS: Patterns and pattern-matching in trees. (1983)

[66] PF,H.Prodinger: Level number sequences for trees.(1987)

[67] PF,JMS: A complexity calculus for recursive tree algorithms.(1987)

[89] PF,P.Sipala,JMS: Analytic variations on the dcommon subexpression prob-
lem.(1990)

[177] PF,B.Chauvin,D.Gardy,B.Gittenberger: And/Or Trees Revisited.(2004)



Basics on trees (cf. B. Sedgewick’s talk)

Simple families of trees (Meir & Moon): T= Y cow(T,..,.T) =
Q(T), where 2 is a finite set of operators w of various arities §(w).

Let &(u) be the enumerative polynomial of Q: [u"]®(u) = card{w €
Q|6(w) = n}; then the 0.9.f. t(z) of Tsatisfies: t(z) = zP(t(z)).

Theorem(M&M): Under very general conditions the number of trees
of size n satisfies, with p = 1/®(7) and 7®'(7) = ®(7):

tn = [2"]t(2) = \/ p~"n3/2(1 4 0(1/n)).

Proof: Track the first singular point on the real positive axis, which
IS @ branching point of order 2. Then apply the Darboux method.

N.B.: All this process can be automated (cf. B. Salvy's talk)



PL-trees: Programming on trees

Procedures, Functions
Conditionals: if cond then ... else ...
Conditional iterations: for i=range while cond do ... od

Primitive operations on trees:

root(X) —> label of the root of tree X

deg(X) —> arity of the root of tree X

for 1 <i<deg(X), X[i] —> i-th root subtree of X:
X = root(X)(X][1],..., X[deg(X)])

tests on label, arity

Example:
function equal(X,Y:T)

if root(X)<>root(Y) then assign(false) else assign(true);

for i:=1 to deg(X) while assign(equal(X[i],Y[i])) do nil od fi
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From the program to its complexity

Idea: Associate to instructions, blocs, constructs, o0.g9.f. to capture
the running time complexity!
Extension of combinatorial constructs (cf. B.Sedgewick)

TA(X1, Xo, ..., Xm): cost of running Aon X1, Xo, ..., X;, of sizes nq,no, ...

consider TA(21, 22, -+, 2m) = XX, |=nq....| Xoml=nm TAXL, s Xm) 2y o2
which represents the cumulative costs of running A over all possible
inputs, indexed by their sizes

In the same spirit for programs (functions) with boolean result, con-
sider characteristic 0.9.f.

n
XA(21, 22, -5 2m) = 221X |1=nq,....| Xon|=rm Atrue(X1; .., Xm)zy 'tz

Challenge: translate the constructors and basic operations
A=C_C(B1,B>,...,B) —>
TA=T(rB1,7B>,..., 7B, xB1,xB>, ..., xBy)



A= Bq1;,By —> 7A(z2) = 7B1(2) + 7B>(2)

A = B(X|i]) > 7A(z) = 27B(z)V(t(z)), with WV(u) = d(u)/u and
variants in case of equality between subtrees...

A=1if Q then B else C —> T7A(z) =7Q(z) +7B(2|Q) + 7C(2|-Q)
A = for i do B(X[i]) od => 7A(2) = 27B(2)®'(t(z))
copying a tree —> tcopy(z) = 2t/(z)

and also : conditional iteration, characteristic functions, etc.
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Complexity of iteration over subtrees
A(X) = B(X); fori=1..deg(X) do A(X[i]) od (the mapboth of Lisp)

Theorem:

Under very large analytic conditions, if the coefficients of the com-
plexity descriptor of B,

bn ~ c.n®p~™ for some constants ¢ and o < 1/2, then the average

complexity of A
Ta=1/2) a+1/2
(o)

Tan ~ c.0

Proof: from the true nature of the singularity and the basic asymp-
totics of the 0.9.f. t(z) for trees; translating the program, we get the
equation:

Ta(z) = 7b(2) + zra(2)P’'(t(z)) from which

Ta(z) = 70(2).2t'(2) /t(2)
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Complexity of Differentiation algorithms

Algebraic expressions with 4+, —, z, \ﬂ/

Thm : The average running time of standard differentiation is O(n3/2
compared to a O(n?) worst case behaviour

If sharing of subexpressions is allowed then the average running keeps
linear

The complexity calculus applies more generally to generalized tree
transducers, specified along the same lines;
4 types of average behaviours are possible:
- linear
- sesquilinear
- quadratic
- exponential
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More algorithms

Tree compatibility: returns the greatest common root part of X and
Y'; average cost is O(1) (compare to naive string matching)

Tree matching: searching a motif in a tree, at all positions; average
cost is O(n) the constant depending on the motif's shape

Tree simplification: applying ¢t — ¢ = O syntactically; average cost is
linear in the input size

Further developments (by the AofA community): recursive tree sim-
plification, boolean expressions, unification, higher order differentia-
tion, rewriting systems, etc.

Limiting laws can also be derived in a systematic way
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Tree compaction

How much space can be saved by sharing systematically the identical
subtrees of a given binary tree?

Complete binary tree of height h has size n = 2+l _ 1 and after
compaction has size h+1

Right comb of height A has size n = h+ 1 and is not changed by
compaction

Theorem: The average size of a tree of size n after compaction is
O(n/+/loglogn)

Comment: such a result cannot be obtained directly by the complexity
calculus! a weaker version along these lines gives o(n)
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Automating the process

by P. Flajolet, B. Salvy, P. Zimmermann
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Dérivation formelle

= zero | one | x
| plus(expression,expression)
| times(expression,expression)
| expo(expression);
plus,times,expo,zero,one,x = atom(1l);

type expression

function diff(e:expression).expression;
case e of '

plus(el,e2) . plus(diff(el),diff(e2));

times(el,e2) : plus(times(diff(el),copy(e2)),
times(copy(el),diff(e2)));

expo(el) . times(diff(el),copy(e));

zero . zero; '

one . zero;

X . one

end;

function copy (e:expression).expression;
measure plus,times,expo,zero,one,x @ 1;

#analyze'diff";;
Average cost for diff on random inputs of size n is:

1/2 i/2 3/2
(126 + 6 ) Pi n

1/2 3/2 3/4 1/2
(-1+26 ) 6 23
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Work in progress...
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