
Philippe Flajolet and Analytic Combinatorics:

Tree Rewriting Systems

by Jean-Marc Steyaert

INRIA-team AMIB, Laboratoire d'Informatique

Ecole Polytechnique

Principle:

� Trees are recursive structures

� Algorithms on trees are naturally recursive

� Translate recursive de�nitions into equations over o.g.f.

� Conclude by means of analytic combinatorics

1

Bibliography

[15] PF: Analyse en moyenne de la détection des arbres partiels.(1978)

[28] PF,JMS: On the analysis of tree-matching algorithms.(1980)

[31] PF,JMS: A complexity calculus for classses of recursive programs over tree

structures. (1981)

[43] PF,JMS: Patterns and pattern-matching in trees. (1983)

[66] PF,H.Prodinger: Level number sequences for trees.(1987)

[67] PF,JMS: A complexity calculus for recursive tree algorithms.(1987)

[89] PF,P.Sipala,JMS: Analytic variations on the dcommon subexpression prob-

lem.(1990)

[177] PF,B.Chauvin,D.Gardy,B.Gittenberger: And/Or Trees Revisited.(2004)

2

Basics on trees (cf. B. Sedgewick's talk)

Simple families of trees (Meir & Moon): T=
∑
ω∈Ω ω(T, ...,T) =

Ω(T), where Ω is a �nite set of operators ω of various arities δ(ω).

Let Φ(u) be the enumerative polynomial of Ω: [un]Φ(u) = card{ω ∈
Ω|δ(ω) = n}; then the o.g.f. t(z) of T satis�es: t(z) = zΦ(t(z)).

Theorem(M&M): Under very general conditions the number of trees

of size n satis�es, with ρ = 1/Φ(τ) and τΦ′(τ) = Φ(τ):

tn = [zn]t(z) =

√
Φ(τ)

2πΦ′′(τ)
ρ−nn−3/2(1 +O(1/n)).

Proof: Track the �rst singular point on the real positive axis, which

is a branching point of order 2. Then apply the Darboux method.

N.B.: All this process can be automated (cf. B. Salvy's talk)

3

PL-trees: Programming on trees

Procedures, Functions

Conditionals: if cond then ... else ...

Conditional iterations: for i=range while cond do ... od

Primitive operations on trees:

root(X) �> label of the root of tree X

deg(X) �> arity of the root of tree X

for 1 ≤ i ≤ deg(X), X[i] �> i-th root subtree of X:

X = root(X)(X[1], ..., X[deg(X)])
tests on label, arity

Example:

function equal(X,Y:T)

if root(X)<>root(Y) then assign(false) else assign(true);

for i:=1 to deg(X) while assign(equal(X[i],Y[i])) do nil od fi

4

5

6

From the program to its complexity

Idea: Associate to instructions, blocs, constructs, o.g.f. to capture

the running time complexity!

Extension of combinatorial constructs (cf. B.Sedgewick)

τA(X1, X2, ..., Xm): cost of running A on X1, X2, ..., Xm of sizes n1, n2, ..., nm
consider τA(z1, z2, ..., zm) =

∑
|X1|=n1,...,|Xm|=nm τA(X1, ..., Xm)zn1

1 ...znmm
which represents the cumulative costs of running A over all possible

inputs, indexed by their sizes

In the same spirit for programs (functions) with boolean result, con-

sider characteristic o.g.f.

χA(z1, z2, ..., zm) =
∑
|X1|=n1,...,|Xm|=nmAtrue(X1, ..., Xm)zn1

1 ...znmm

Challenge: translate the constructors and basic operations

A = C(B1, B2, ..., Bk) �>

τA = Γ(τB1, τB2, ..., τBk, χB1, χB2, ..., χBk)

7

A = B1;B2 �> τA(z) = τB1(z) + τB2(z)

A = B(X[i]) �> τA(z) = zτB(z)Ψ(t(z)), with Ψ(u) = Φ(u)/u and

variants in case of equality between subtrees...

A = if Q then B else C �> τA(z) = τQ(z) + τB(z|Q) + τC(z|¬Q)

A = for i do B(X[i]) od �> τA(z) = zτB(z)Φ′(t(z))

copying a tree �> τcopy(z) = zt′(z)

and also : conditional iteration, characteristic functions, etc.

8

9

Complexity of iteration over subtrees

A(X) = B(X); for i = 1..deg(X) do A(X[i]) od (the mapboth of Lisp)

Theorem:

Under very large analytic conditions, if the coe�cients of the com-

plexity descriptor of B,

bn ∼ c.nα.ρ−n for some constants c and α ≤ 1/2, then the average

complexity of A

τan ∼ c.θΓ(α−1/2)
Γ(α) nα+1/2

Proof: from the true nature of the singularity and the basic asymp-

totics of the o.g.f. t(z) for trees; translating the program, we get the

equation:

τa(z) = τb(z) + zτa(z)Φ′(t(z)) from which

τa(z) = τb(z).zt′(z)/t(z)

10

11

Complexity of Di�erentiation algorithms

Algebraic expressions with +,−, x,√,/

Thm : The average running time of standard di�erentiation is O(n3/2

compared to a O(n2) worst case behaviour

If sharing of subexpressions is allowed then the average running keeps

linear

The complexity calculus applies more generally to generalized tree

transducers, speci�ed along the same lines;

4 types of average behaviours are possible:

- linear

- sesquilinear

- quadratic

- exponential

12

13

14

More algorithms

Tree compatibility: returns the greatest common root part of X and

Y ; average cost is O(1) (compare to naive string matching)

Tree matching: searching a motif in a tree, at all positions; average

cost is O(n) the constant depending on the motif's shape

Tree simpli�cation: applying t − t = 0 syntactically; average cost is

linear in the input size

Further developments (by the AofA community): recursive tree sim-

pli�cation, boolean expressions, uni�cation, higher order di�erentia-

tion, rewriting systems, etc.

Limiting laws can also be derived in a systematic way

15

Tree compaction

How much space can be saved by sharing systematically the identical

subtrees of a given binary tree?

Complete binary tree of height h has size n = 2h+1 − 1 and after

compaction has size h+ 1

Right comb of height h has size n = h + 1 and is not changed by

compaction

Theorem: The average size of a tree of size n after compaction is

O(n/
√

log logn)

Comment: such a result cannot be obtained directly by the complexity

calculus! a weaker version along these lines gives o(n)

16

Automating the process

by P. Flajolet, B. Salvy, P. Zimmermann

17

18

19

Work in progress...

20

