Philippe Flajolet and Analytic Combinatorics:
Tree Rewriting Systems
by Jean-Marc Steyaert
INRIA-team AMIB, Laboratoire d’'Informatique
Ecole Polytechnique

Principle:

— Trees are recursive structures

— Algorithms on trees are naturally recursive

— Translate recursive definitions into equations over o0.9.f.

— Conclude by means of analytic combinatorics

Bibliography

[15] PF: Analyse en moyenne de la détection des arbres partiels.(1978)

[28] PF,JMS: On the analysis of tree-matching algorithms.(1980)

[31] PF,JMS: A complexity calculus for classses of recursive programs over tree
structures. (1981)

[43] PF,JMS: Patterns and pattern-matching in trees. (1983)

[66] PF,H.Prodinger: Level number sequences for trees.(1987)

[67] PF,JMS: A complexity calculus for recursive tree algorithms.(1987)

[89] PF,P.Sipala,JMS: Analytic variations on the dcommon subexpression prob-
lem.(1990)

[177] PF,B.Chauvin,D.Gardy,B.Gittenberger: And/Or Trees Revisited.(2004)

Basics on trees (cf. B. Sedgewick’s talk)

Simple families of trees (Meir & Moon): T= Y cow(T,..,.T) =
Q(T), where 2 is a finite set of operators w of various arities §(w).

Let &(u) be the enumerative polynomial of Q: [u"]®(u) = card{w €
Q|6(w) = n}; then the 0.9.f. t(z) of Tsatisfies: t(z) = zP(t(z)).

Theorem(M&M): Under very general conditions the number of trees
of size n satisfies, with p = 1/®(7) and 7®'(7) = ®(7):

tn = [2"]t(2) = \/ p~"n3/2(1 4 0(1/n)).

Proof: Track the first singular point on the real positive axis, which
IS @ branching point of order 2. Then apply the Darboux method.

N.B.: All this process can be automated (cf. B. Salvy's talk)

PL-trees: Programming on trees

Procedures, Functions
Conditionals: if cond then ... else ...
Conditional iterations: for i=range while cond do ... od

Primitive operations on trees:

root(X) —> label of the root of tree X

deg(X) —> arity of the root of tree X

for 1 <i<deg(X), X[i] —> i-th root subtree of X:
X = root(X)(X][1],..., X[deg(X)])

tests on label, arity

Example:
function equal(X,Y:T)

if root(X)<>root(Y) then assign(false) else assign(true);

for i:=1 to deg(X) while assign(equal(X[i],Y[i])) do nil od fi

4

EYAMTLE
PUTTERA. MATCHING W TREES
resc

7 P\:rr, Lm guM
k%: D Ke CZ‘W)

+ % (%
tm;

) |
. Cotferw A Lua:j Tree g A

Dt iene = T ia obfodwed #m A
13 3,4'«-;3 bivany tres £ lears of £

T - \x

! 7’4} _-: b :
(‘oof? (2)'7‘) =
L? 1):‘)0 #'“ 7&""‘"
dieif Tex Hoa {J«.
deif ok ? (24 T 4F5) N
Moo rt? (Dt Toflt) off
e (27) = ok (2T); :
4 24 Ho oce! (8, T 4H)
oce? (2, Tuptf) £
17 Let‘vj jﬁ‘x-ca‘ 5 deforwine He a,q/e.raje.
0911’4 muu{j root! ad cce! over all Trees

r{’!,'a}o, T P

From the program to its complexity

Idea: Associate to instructions, blocs, constructs, o0.g9.f. to capture
the running time complexity!
Extension of combinatorial constructs (cf. B.Sedgewick)

TA(X1, Xo, ..., Xm): cost of running Aon X1, Xo, ..., X;, of sizes nq,no, ...

consider TA(21, 22, -+, 2m) = XX, |=nq....| Xoml=nm TAXL, s Xm) 2y o2
which represents the cumulative costs of running A over all possible
inputs, indexed by their sizes

In the same spirit for programs (functions) with boolean result, con-
sider characteristic 0.9.f.

n
XA(21, 22, -5 2m) = 221X |1=nq,....| Xon|=rm Atrue(X1; .., Xm)zy 'tz

Challenge: translate the constructors and basic operations
A=C_C(B1,B>,...,B) —>
TA=T(rB1,7B>,..., 7B, xB1,xB>, ..., xBy)

A= Bq1;,By —> 7A(z2) = 7B1(2) + 7B>(2)

A = B(X|i]) > 7A(z) = 27B(z)V(t(z)), with WV(u) = d(u)/u and
variants in case of equality between subtrees...

A=1if Q then B else C —> T7A(z) =7Q(z) +7B(2|Q) + 7C(2|-Q)
A = for i do B(X[i]) od => 7A(2) = 27B(2)®'(t(z))
copying a tree —> tcopy(z) = 2t/(z)

and also : conditional iteration, characteristic functions, etc.

° ézne(‘a& Aenes %(c,,;t cau !4
Coupifed = reaww% o e pa#em Shuclire

(CJ Coun t:j wt 4 /Fr o jewaﬂu.l fir{')
lel

Twet 7] (2) = B (2_) : b

o)w @ = b+ 2 el [»] () B)
a L 2. B0). <rodl r‘} ()
= 4 Br) -2
7(%91'[}'] 3y = . 72:57.(2) 3 %(2’)'_4

Tl (2) = Byl %Tmo‘f'[ﬂ‘](%))
é‘ﬂ +%7(m+[;{‘\(z) “m’f' W}

D -k . U

'meotf -\(z)~ (B > 4%
t(be‘\'[){o\-} . % § +1% 55/"

A

‘

Acercas 4 d (o bac Yows

Complexity of iteration over subtrees
A(X) = B(X); fori=1..deg(X) do A(X[i]) od (the mapboth of Lisp)

Theorem:

Under very large analytic conditions, if the coefficients of the com-
plexity descriptor of B,

bn ~ c.n®p~™ for some constants ¢ and o < 1/2, then the average

complexity of A
Ta=1/2) a+1/2
(o)

Tan ~ c.0

Proof: from the true nature of the singularity and the basic asymp-
totics of the 0.9.f. t(z) for trees; translating the program, we get the
equation:

Ta(z) = 7b(2) + zra(2)P’'(t(z)) from which

Ta(z) = 70(2).2t'(2) /t(2)

10

TOoP-DOWN RECURS 1onN
(2. Ch\)‘o(l.k IJ“S)

F Orwwl den'm(:;n (3¢Mra.,l£8,,d)
S = st of gmlcls coustaufs ollerat:rs' fafliuu.--

_—D s SCb of clcn'q/a&;u rulcs
A
with) (AT /\ i
T4 T2 T.v(s)

DT) - | headse | = 7(4)

60{7-'65 = o (AS)
D) d(r) Dlr)
olercved subbrees = (3(A)

A
Eq‘aat,;ws ﬁr bhe f&mg ? lrees

F. 2 (FF.-F)
se S \

11

Complexity of Differentiation algorithms

Algebraic expressions with 4+, —, z, \ﬂ/

Thm : The average running time of standard differentiation is O(n3/2
compared to a O(n?) worst case behaviour

If sharing of subexpressions is allowed then the average running keeps
linear

The complexity calculus applies more generally to generalized tree
transducers, specified along the same lines;
4 types of average behaviours are possible:
- linear
- sesquilinear
- quadratic
- exponential
12

4' t‘\l- dﬂf':‘ftd. Wus A Msf’f oj Aerrfva:'i‘;m,

brans 4,..,T.m) (A)
| ez 4-72, «(8, [T
+ Z_ (5 4)- Erans (T.L)
tfmss (é) < Z_ traws (T) Tl

TeQ
U.s(v:j (,owv,‘n]u 5 Ca.(cul«s rules

trans(é , T. fool = .J) =
N - 3 (£G3)
1 O{CA) z, 23y - (f(é))
+ (S(A) © 3 brens(q) - (f(g))
3. E(§) + 3 £3)- A (%))

(¢) -4
A4

travs (é) =
4-35(#(5))
v (s)
€(v)= 2 7(4) u e
At v(s)-14

Blu)e I ((4) &

13

Anaggc S‘h&o

¥ hes ofs dDMO‘hMt h':ju(a.n'g n é:r 6’2+

and b“(!ﬂ
fy= T +¥(4- ‘f) e == f(p)
_c(é)= z' +X (’f') "+ s.o.b.

numerafor - (,’-dv' (/1_._}(/& + s.o k.

denominator depends on B (T) ,7 ,(‘C)
ond Lrans } F é

A B # (p\nsGht
o & L.\{ {7 (t) 0
trans (3) = ? oy’ [/LE."’:Z'}-/& + s.o.b.
A-p®(®)

)
é%(.t):. g?(t) adx
h‘M$ (5\ H -—e————— ("L - <) +$.0.t.

_ e >& @
sivquleri by (poled v 3=wlp
@ Bsco\nsl’ut
£ and ¥ Stwa b

P~ = K - /
trdus(.‘a) = € oy’ {4 »%]} z+s.o.l‘.

-

14

More algorithms

Tree compatibility: returns the greatest common root part of X and
Y'; average cost is O(1) (compare to naive string matching)

Tree matching: searching a motif in a tree, at all positions; average
cost is O(n) the constant depending on the motif's shape

Tree simplification: applying ¢t — ¢ = O syntactically; average cost is
linear in the input size

Further developments (by the AofA community): recursive tree sim-
plification, boolean expressions, unification, higher order differentia-
tion, rewriting systems, etc.

Limiting laws can also be derived in a systematic way
15

Tree compaction

How much space can be saved by sharing systematically the identical
subtrees of a given binary tree?

Complete binary tree of height h has size n = 2+l _ 1 and after
compaction has size h+1

Right comb of height A has size n = h+ 1 and is not changed by
compaction

Theorem: The average size of a tree of size n after compaction is
O(n/+/loglogn)

Comment: such a result cannot be obtained directly by the complexity
calculus! a weaker version along these lines gives o(n)

16

Automating the process

by P. Flajolet, B. Salvy, P. Zimmermann

17

v

complexity

\ 4

c.g.f. equations

.. 4 __‘ -couﬁﬁng gf ,‘

equivalent

d.c. equations

v

v

of size n

)

’ Cﬁumber of ‘inpu

- dividev

* average cost

{ complexity descﬁptor)—

~

equivalent
v

(.

of size n

total cost on inputs) g

Maf)lé" E

18

Dérivation formelle

= zero | one | x
| plus(expression,expression)
| times(expression,expression)
| expo(expression);
plus,times,expo,zero,one,x = atom(1l);

type expression

function diff(e:expression).expression;
case e of '

plus(el,e2) . plus(diff(el),diff(e2));

times(el,e2) : plus(times(diff(el),copy(e2)),
times(copy(el),diff(e2)));

expo(el) . times(diff(el),copy(e));

zero . zero; '

one . zero;

X . one

end;

function copy (e:expression).expression;
measure plus,times,expo,zero,one,x @ 1;

#analyze'diff";;
Average cost for diff on random inputs of size n is:

1/2 i/2 3/2
(126 + 6) Pi n

1/2 3/2 3/4 1/2
(-1+26) 6 23

19

Work in progress...

20

