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Random Generation with Philippe Flajolet
Philippe Flajolet and Analytic Combinatorics



I had Philippe as teacher of “petites classes d’informatique” at
École Polytechnique in 1985-1987.

At that time Patrick Cousot gave the main lectures (in Pascal) and
in 2nd year Jean Vuillemin (Le Lisp)



At that time we worked with Macintosh’es



which enabled us to connect to a Vax 8600:



and learn a few Unix commands:

% ls -lR /
...
% man yacc
...
% cd .
...
% ftp prep.ai.mit.edu
...
% pc toto.p; ./a.out
...
% cat > a.out << EOF; ./a.out; /bin/rm a.out
...



I did a PhD under
the supervision of
Philippe in 1988-1991
(Séries génératrices et
analyse automatique
d’algorithmes).

During my PhD, Philippe
showed me the thesis of
Daniel H. Greene (La-
belled formal languages
and their uses)



Appendix C of Greene’s thesis was particularly interesting: A
General-Purpose Generator of Combinatorial Elements.

One day, Bernard van Cutsem (who was doing research in
statistics) asked Philippe how to generate so-called hierarchies at
random. This led to the recursive method which I will try to
describe in detail, and to the boustrophedon algorithm.



The Recursive Method

[113] A Calculus of Random Generation, Ph. Flajolet,
P. Zimmermann and B. Van Cutsem, European Symposium on
Algorithms, 1993.

[119] A Calculus for the Random Generation of Labelled
Combinatorial Structures, Ph. Flajolet, P. Zimmermann and
B. Van Cutsem, Theoretical Computer Science, 1994.

Later Philippe was interested in faster random generation of
objects of size near n [cf MS talk].



Combstruct: an example

> with(combstruct):
> bin := {B=Union(Z, Prod(B,B))}:
> seq(count([B, bin, unlabelled], size=n), n=1..19);
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,

742900, 2674440, 9694845, 35357670, 129644790, 477638700

> draw([B, bin, unlabelled], size=10);
Prod(Prod(Prod(Prod(Z, Z), Z), Z),

Prod(Prod(Z, Z), Prod(Prod(Z, Z), Prod(Z, Z))))



Of course you have recognized
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The Recursive Method in a few slides

Applies to decomposable data structures (idem ΛΥΩ):

Atomic objects: Epsilon (size 0) and Z (size 1).

Constructors: Union, Product, Sequence, Set, Cycle, ...

A = Prod(Z, Set(A)) non plane trees
B = Union(Z, Prod(B,B)) plane binary trees

C = Prod(Z, Seq(C)) plane general trees
D = Set(Cycle(Z)) permutations
E = Set(Cycle(A)) functional graphs

F = Set(Set(Z,card>=1)) set partitions
H = Union(Z,Set(H,card>=2)) hierarchies
M = Seq(Set(Z,card>=1)) surjections



Folk theorem of combinatorial analysis: the specification can be
turned out into a set of equations for the generating functions.

Hierarchies: H = Union(Z,Set(H,card>=2))

H(z) = z + exp(H(z))− 1− H(z)

Corollary: the counting sequences up to size n can be computed in
O(n2) arithmetic operations.



There are 4862 · 10! labelled plane binary trees:
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The pointing operator Θ [cf Basile Morcrette’s talk]
There are 4862 · 10! · 10 pointed labelled plane binary trees:
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Footnote 2 of [119]: An interesting outcome of this idea [the pointing
operator] is the combinatorial differential calculus of Leroux and Viennot,
see for instance [26].



Standard Specifications

C = ΘA =⇒ C(z) = z d
dz A(z)

Example: A = Prod(Z, Set(A)) (non plane trees)

A(z) = z · B(z), ΘB(z) = B(z) ·ΘA(z)



From standard specifications to counting
C = Z :
gC := proc(n) if n=1 then Z else error() fi end

C = A + B:
gC := proc(n) u := rand(1..C(n)); if u <= A(n) then
gA(n) else gB(n) fi end

C = A · B:
gC := proc(n) u := rand(1..C(n)); for k from 0 to n
do t := A(k)*B(n-k); if u <= t then [gA(k),gB(n-k)]
else u := u - t fi od end

C = ΘA:
gC := proc(n) point(gA(n), rand(1..n)) end

ΘC = A:
gC := proc(n) unpoint(gA(n)) end



The Boustrophedon Algorithm
The main cost comes from the product operation, when k goes up
to n (or n − 1, n − 2, ...):
C = A · B:
gC := proc(n) u:=rand(1..C(n)); for k in [0...n] do
u:=u-A(k)*B(n-k); if u<=0 then
return([gA(k),gB(n-k)]) fi od end
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f (n) = maxk [k + f (k) + f (n − k)] =⇒ f (n) = Θ(n2)



@CachedFunction
def B(n):

if n==1: return 1
else: return sum([B(k)*B(n-k) for k in [1..n-1]])

def Pr(n,k):
return 1.0*B(k)*B(n-k)/B(n)

sage: list_plot([Pr(50,k) for k in [0..50]])





The Boustrophedon Idea

C = A · B:
gC:=proc(n) u:=rand(1..C(n)); for k in [0,n,1,n-1,...]
do u:=u-A(k)*B(n-k); if u<=0 then
return([gA(k),gB(n-k)]) fi od end

f (n) = maxk [min(k, n − k) + f (k) + f (n − k)]

f (n) =
1

2 log 2n log n + O(n)



Philippe’s influence on my research

I doing experiments to confirm or discover theories
I using and extending computer algebra: Maple, MuPAD, Sage,

...
I rigorous floating-point computations: IEEE 754, GNU MPFR,

...



A few more stories about Philippe

I Philippe before a talk
I Philippe’s mbox
I Philippe telling me to visit G. Kahn
I Philippe drinking a beer after the Algo seminar




