Philippe and the height of trees

N. Broutin

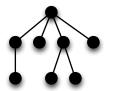
December 15, 2011

Uniform random trees from a class

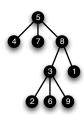
Model

- ► Take a class of trees
- ▶ put them all in a big bag
- ▶ pick one at random

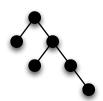
Plane trees (ordered children)



Cayley (unordered, labelled)



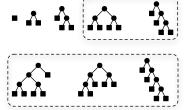
Catalan (unlabelled, positions)

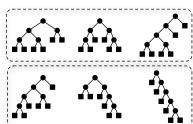


Rooted unlabelled unordered binary trees

Objects: (Pólya, Otter)

- rooted tree
- ▶ indistinguishable nodes
- ▶ (out)degree 0 or 2
- ▶ size: number of leaves





Uniformly random trees, why?

Applications were originally dubious:

- ▶ Not the trees for data structures
- ▶ Not the trees for skeleton of real-world networks
- ightharpoonup \Rightarrow not quite the model of randomness for applications

Turn out to be essential combinatorial structures:

- hashing with linear probing
- coalescent/fragmentation processes (additive coalescent)
- essential in the combinatorics of planar maps
- building blocks of critical random graphs
- building blocks of minimum spanning trees

and... they are wonderful mathematical objects!

A remarkable paper

Universality of the asymptotic behaviour of trees:

- before: limited to the cases with explicit expressions;
- demonstrate that a large number of trees behave similarly;
- ▶ implicit connection to the Brownian excursion \Rightarrow CRT

Generality of the method: the origins of singularity analysis

- ▶ before: estimates of series using integrals using real analysis
- estimates using the behaviour of generating function about the singularities
- gives local results, and estimates for error terms
- approach underlies the (more difficult) analysis of search trees
- has led to hundreds of beautiful results!

Model and Aim

Model of randomness:

- \triangleright put all trees of size n in a bag
- ▶ take one uniformly at random
- ▶ Let H_n be the height

Proceed from first principles

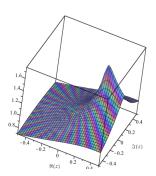
$$\mathbb{P}(H_{n} \le h) = \frac{\#\{\text{trees of size } n \text{ and height } \le h\}}{\#\{\text{trees of size } n\}}$$

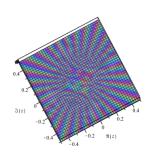
A "complex" coding-decoding problem

Generic decoding: Cauchy's coefficient formula

Assume $f(z) = \sum_{n \ge 0} a_n z^n$ is analytic inside a simple contour γ around the origin,

$$a_n = \frac{1}{2i\pi} \int_{\gamma} f(z) \frac{dz}{z^{n+1}}.$$





A "complex" coding-decoding problem II

Clever decoding

Suppose f(z) has an analytic continuation in a "pacman" domain **beyond** the unique dominant singularity ρ

- main contribution is in the dent around ρ
- ▶ similar functions around ρ have similar coefficients!

A combinatorial approach

A canonical example: binary position trees

Recursive decomposition:
$$y(z) = \sum_{t} z^{|t|} = 1 + zy(z)^2$$

Generating function:
$$y(z) = \sum_{t} z^{|t|} \equiv \sum_{n} y_n z^n$$

$$y(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$$
 and $y_n = \frac{1}{n+1} {2n \choose n} \sim \frac{1}{\sqrt{\pi}} n^{-3/2} 4^n$

An analytic-combinatorics approach

Recursive decomposition:

$$y_{h+1}(z) = 1 + zy_h(z)^2$$
 and $y_0(z) = z$

Main recurrence: proportion of trees exceeding height h

$$e_h(z) = 1 - \frac{y_h(z)}{y(z)}$$
 $e_{h+1}(z) = zy(z)e_h(z)(2 - e_h(z)), \qquad e_0(z) = 1 - \frac{z}{y(z)}$

Understanding H_n reduces to understanding how $y_h \to y$ or $e_h \to 0$

Recap what we want

 H_n := height of a uniformly random tree

$$\mathbb{P}(H_n > h) = e_{h,n}$$
 \Rightarrow **estimate** the coefficients $e_{h,n}$

Cauchy coefficient formula

$$e_{h,n} = \frac{1}{2i\pi} \int_{\gamma} e_h(z) \frac{dz}{z^{n+1}}$$

- \Rightarrow Need to estimate the generating function $e_h(z)$
 - Away from ρ , large arc: **negligible** (check)
 - \triangleright Close to ρ , rectilinear portions estimate precisely

The outercircular arc: an upper bound

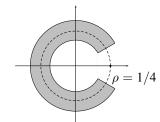
$$|e_{h+1}(z)| \leq |e_h(z)| \cdot \underbrace{|zy(z)|(2+|e_h(z)|)}_{\beta}$$

Lemma (Criterion for convergence)

Let
$$z \in \{z : |y| \le 1\}$$
. Then $|e_h(z)| \to 0 \quad \Leftrightarrow \quad \exists \alpha, \beta < 1, m \in \mathbb{N} \text{ s.t. } \begin{cases} |e_m| < \alpha \\ |zy(z)|(2+\alpha) < \beta \end{cases}$

Proving $|e_h(z)| \to 0$ in an **extended domain**:

- $e_h \le \sum_{n>h} y_n z^n \le \frac{1}{\sqrt{h}} \left(\frac{z}{|\rho|}\right)^h \Rightarrow$ convergence for $|z| \le \rho$
- ► continuity \Rightarrow convergence inside tube: $|\arg(z)| > \eta$ and $|z| < \rho + \epsilon$



Close to the singularity: precise estimates

Recall
$$y(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$$

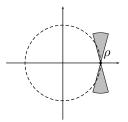
Remark

$$|e_h(z)| > 0$$
 and \Rightarrow $2zy(z) \to 1$ as $z \to \rho$

impossible to apply the criterion directly for *h* fixed

Plan of attack: apply for $h = N(z) \to \infty$

- 1. control the evolution of $|e_h(z)|$ for $h \le N(z)$ and close to the real axis: "almost" real
- 2. choose N(z) s.t. the criterion is satisfied for $h = N(z) \Rightarrow e_h(z) \rightarrow 0$
- 3. bootstrap to obtain good estimates



Sketch of the approach inside the sandclock

A problem in iteration

$$e_{h+1}(z) = e_h(z) \cdot (1-\varepsilon) \cdot \left(1 - \frac{e_h(z)}{2}\right)$$
 $\varepsilon(z) = \sqrt{1-4z}$

$$\frac{(1-\varepsilon)^{h+1}}{e_{h+1}} = \frac{(1-\varepsilon)^h}{e_h} \cdot \frac{1}{1-e_h/2} \\ = \frac{(1-\varepsilon)^h}{e_h} + \frac{(1-\varepsilon)^h}{2} + \frac{(1-\varepsilon)^h}{4} \cdot \frac{e_h}{1-e_h/2}$$

Alternative recurrence

$$\frac{(1-\varepsilon)^{h+1}}{e_{h+1}} = \frac{1}{e_0} + \sum_{i=0}^h \frac{(1-\varepsilon)^i}{2} + \sum_{i=0}^h \frac{(1-\varepsilon)^i}{4} \cdot \frac{e_i}{1-e_i/2}$$

Gathering the fruits: give me an integral!

Bootstrapping: As $z \to \rho$ we have $\varepsilon \to 0$

$$\frac{|1-\varepsilon|^h}{|e_h|} \ge \frac{K}{h} \quad \Rightarrow \quad |e_i| \le \frac{|1-\varepsilon|^i}{Ki}$$

Main approximation in the sandclock

$$\frac{(1-\varepsilon)^h}{e_h} = \frac{1-(1-\varepsilon)^h}{2\varepsilon} + O(\log h)$$

Results

Simple family:

- c_d types of nodes of degree d, $c_d \leq \gamma^d$, for some γ
- gives a constant λ , depending on the family

Theorem (Limit distribution)

The height \underline{H}_n admits a **limiting theta distribution** and $\delta^{-1}/\sqrt{\log n} \le x \le \delta\sqrt{\log n}$:

$$\lim_{n\to\infty}\left|\mathbb{P}\left(H_n\geq x\sqrt{n}\right)-\sum_{k\geq 1}(k^2\lambda^2x^2-2)e^{-k^2\lambda^2x^2/4}\right|=0.$$

Local limit theorem

For $h = x\sqrt{n}$ an integer, $\delta^{-1}/\sqrt{\log n} \le x \le \delta\sqrt{\log n}$

$$\mathbb{P}(H_n = h) \sim \frac{1}{2x} \sum_{k>1} (k^4 \lambda^4 x^4 - 6k^2 \lambda^2 x^2) e^{-k^2 \lambda^2 x^2/4}.$$

Results II

Theorem (Moments)

Let $r \ge 1$. The *r*-th moment of the height H_n satisfies

$$\mathbf{E}\left[H_n\right] \sim \frac{2}{\lambda} \sqrt{\pi n} \quad \text{and} \quad \mathbb{E}[H_n^r] \sim r(r-1)\zeta(r)\Gamma(r/2) \left(\frac{2}{\lambda}\right)^r n^{r/2}, \quad r \geq 2.$$

Some observations:

- ▶ distribution of the height of all simply generated trees
- ▶ distribution of the maximum of a **Brownian excursion**
- connection made explicit 10 years later by Aldous

