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Quebec 1987 ...

... at a number theory conference: comments on talk on the sum∑
k<n

Qν(k)

(Q > 0, ν(k) ... binary sum-of-digits function = nb. of 1’s in bin. exp.)

Actually we have (also thanks to Philippe’s work):∑
k<n

Qν(k) ∼ Φ(log2(n))nα,

where Φ(t) is a continuous and periodic function.

Philippe’s comments dealt with (as far as I remember)

• digital sum

• Mellin transform, zeta-function

• asymptotics with the help of complex analysis
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What is Number Theory ?

(according to MSC 2010)

11 Number theory

11A Elementary number theory

11B Sequences and sets

11C Polynomials and matrices

11D Diophantine equations

11E Forms and linear algebraic groups

11F Discontinuous groups and automorphic forms

11G Arithmetic algebraic geometry (Diophantine geometry)

11H Geometry of numbers

11J Diophantine approximation, transcendental number theory

11K Probab. theory: distr. modulo 1; metric theory of algorithms



11L Exponential sums and character sums for finite fields

11M Zeta and L-functions: analytic theory

11N Multiplicative number theory

11P Additive number theory; partitions

11R Algebraic number theory: global fields For complex multiplication

11S Algebraic number theory: local and p-adic fields

11T Finite fields and commutative rings (number-theoretic aspects)

11U Connections with logic

11Y Computational number theory

11Z Miscellaneous applications of number theory



Number Theory in Philippe Flajolet’s Work
(following MathSciNet)

11A Elementary number theory

11A55 Continued fractions

11A63 Radix representation; digital problems

11B Sequences and sets

11B37 Recurrences

11B83 Special sequences and polynomials

11J Diophantine approximation, transc. number theory

11J70 Continued fractions and generalizations

11K Probab. theory: distr. modulo 1; metric theory of

algorithms

11K06 General theory of distribution modulo 1

11K16 Normal numbers, radix expansions, Pisot numbers etc.



11K38 Irregularities of distribution, discrepancy

11K50 Metric theory of continued fractions

11K55 Metric theory of other algorithms and expansions; measure and

Hausdorff dimension

11M Zeta and L-functions: analytic theory

11M06 ζ(s) and L(s, χ)

11M41 Other Dirichlet series and zeta functions

11N Multiplicative number theory

11N25 Distribution of integers with specified multiplicative constraints

11T Finite fields and commutative rings

11T06 Polynomials

11Y Computational number theory

11Y16 Algorithms; complexity

11Y60 Evaluation of constants

11Y65 Continued fraction calculations



Analytic Combinatorics and
Analytic Number Theory

Analytic combinatorics: power series (= Laplace transform)

(product rule based on additive structure)

∑
n≥0

ane−sn = s
∫ ∞
0

∑
n≤t

an

 e−st dt (z = e−s)

Analytic number theory: Dirichlet series (= Mellin transform)

(product rule based on multiplicative structure)

∑
k≥1

ak

ks
= s

∫ ∞
0

∑
k≤t

ak

 t−s−1 dt

Laplace transform = Mellin transform

“=⇒′′ analytic combinatorics = analytic number theory



Riemann Zeta-Function

ζ(s) =
∞∑

n=1

1

ns

Euler product (relation to primes):

ζ(s) =
∏
p∈P

1

1− p−s

Analytic properties of ζ(s) are closely related to the distribution of

primes, in particular to the prime number theorem:

π(x) = #{p ∈ P : p ≤ x} ∼
x

logx
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The Riemann zeta-function appears as/in ...

• Dirichlet series, digital sums, Mellin transforms:

analytic properties of ζ(s) are used: meromorphic continuation,

growth properties, ...

• values of ζ(s), harmonic numbers, non-holonomicity:

analytic properties of ζ(s) as well as properties of special values of

ζ(s) are applied.



Zeta-function 1

Digital sums (related to divide-and-conquer recurrences)

Delange-type results [116]

ν2(n) ... binary sum-of-digits function

S(n) =
∑
k<n

ν2(k) =
1

2
n log2 n + nF0(log2 n) ,

where the Fourier coefficients of F0 are given by

fk = −
1

log2

ζ(χk)

χk(χk + 1)
, χk =

2πik

log 2

(ν2(k) denotes the binary sum-of-digits function)



Zeta-function 1

Proof uses the Dirichlet series∑
k≥1

ν2(k)

ks
=

ζ(s)

2s − 1

and the integral representation

1

n
S(n)−

n− 1

2
=

1

2πi

∫ 2+i∞

2−i∞

ζ(s)

2s − 1
ns ds

s(s + 1)

Generalizations: analysis of Gray code with the help of the Hurwitz

zeta-function (and many others).



Zeta-function 1

Weighted Digital sums [199]

n =
∑
k≥0

εk2
k (εk ∈ {0,1} binary digits)

SM(n) =
∑
k≥0

j(j + 1) · · · (j + M − 1)εk2
k weighted sum

∑
n≥1

SM(n)− SM(n− 1)

ns
= M !

2(M−1)(s−1)

(2s−1 − 1)M
ζ(s)

Explicit represenatation for the average (Delange type result)

1

n

∑
k<n

SM(k) =
n

2
(log2 n)M + n

M−1∑
d=0

FM,d(log2 n)(log2 n)d +(−1)M+1M !



Zeta-function 2

Mellin transforms [120]

M[f(x); s] =
∫ ∞
0

f(x)xs−1 dx = f∗(s)

Then

M

∑
k≥1

f(kx); s

 = f∗(s)ζ(s)

M

∑
k≥1

f(
√

kx); s

 = f∗(s)ζ(s/2)

and in general (harmonic sums):

M

∑
k≥1

λkf(µkx); s

 = f∗(s)
∑
k≥1

λkµ−s
k

Such sums appear in analysis of several algorithms (like divide and

conquer etc.)



Zeta-function 3

Asymptotics of sequences [125]

The Mahlerian sequence fn is defined by

∑
n≥0

fnzn =
∞∏

k=0

1

1 + z2k + z2k+1 .

Its asymptotic expansion includes periodic functions of the form

P (v) =
1

2 log2

∑
k 6=0

Γ(χ2k)ζ(1 + χ2k)(3
−χ2k + 1)exp(−4kiπv)

(A proper saddle point analysis is used.)



Zeta-function 4

Euler sums and multiple zeta values [143]

H
(r)
n =

n∑
j=1

1

jr

Then we have (for example)∑
n≥1

Hn

n2
= 2ζ(3)

∑
n≥1

(Hn)2

n5
= 6ζ(7)− ζ(2)ζ(5)−

5

2
ζ(3)ζ(4)

∑
n≥1

H
(2)
n

n5
= 5ζ(2)ζ(5) + 2ζ(2)ζ(3)− 10ζ(7)



Zeta-function 4

Many formulas like that are well known (by Borwein et al. etc.)

In [143] systematic study by using contour integral representations

and residue computations is given. In this general context multiple

zeta values appear, too.

These multiple zeta values appear also in the comparision of continued

fraction algoithms [157]. The analysis there relies (also) on analytic

properties of the zeta (and related) functions.



Zeta-function 5

ζ(s) represented by Newton interpolation series [197]

ζ(s)−
1

s− 1
=

∑
n≥0

(−1)nbn

(s

n

)
with

bn = n(1− γ −Hn−1)−
1

2
+

n∑
k=2

(n
k

)
(−1)kζ(k)

Precise asymptotic estimates for bn can be derived, too (they are of

size ≈ e−c
√

n and leads to fast convergenc).



Zeta-function 5

Non-holonomicity [207]

The sequence
1

ζ(n + 2)
is non-holonomic

(it does not satisfy a linear recurrence with polynomial coefficients).

The proof relies on then Lindelöf integral representation

∑
n≥1

1

ζ(n + 2)
(−z)n = −

1

2πi

∫ 1/2+∞

1/2−∞

1

ζ(s + 2)
zs π

sin(πs)
ds

Infinitely many zeros of ζ(s) lead to infinitely poles of 1/ζ(s + 2) and

consequently to an asymptotic behaviour that is impossible for holo-

nomic sequences.



Polynomials over Finite Fields

Analogy to integers (K = Fq)

integers ↔ polynomials over K

prime numbers ↔ irreducible polynomials

rational numbers ↔ Laurent series

prime number theorem ↔ number of irred. polynomials

... ↔ ...
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Analytic Combinatorics

Power set construction P of a combinatorial structure C
(Objects of P can be decomposed into objects of C.)

Labelled structure (exponential generating functions):

P̂ (z) = exp(Ĉ(z))

Unlabelled structures (ordinary generating functions):

multi set and power set construction

P (z) = exp

∑
k≥1

1

k
C(zk)



S(z) = exp

∑
k≥1

(−1)k−1

k
C(zk)





Analytic Combinatorics

Power set construction P of a combinatorial structure C

u “marks” the number of components.

Labelled structure

P̂ (z, u) = exp(uĈ(z))

Unlabelled structures:

P (z, u) = exp

∑
k≥1

uk

k
C(zk)



S(z, u) = exp

∑
k≥1

(−1)k−1uk

k
C(zk)





A Central Limit Theorem

Theorem [88]

Suppose that the generating function of the combinatorial class C is a

logarithmic function, that is,

C(z) = a log
1

1− z/ρ
+ K + o(1)

in a Delta-domain.

Then the number of components of C in a power set construction

satisfies a central limit theorem with mean and variance ∼ a logn .

Example. Cycles in permutations: P̂ (z, u) = exp
(
u log 1

1−z

)



Polynomials over a finite field Fq

GF of monic polynomials (Ik ... number of irreducible monic pol.)

P (z) =
1

1− qz
= exp

∑
k≥1

1

k
I(zk)


=

∏
k≥1

(
1

1− zk

)Ik

GF for irreducible (monic) polynomials

I(z) =
∑
k≥1

µ(k)

k
log

1

1− qzk
= log

1

1− qz
+ K + o(1)

“Prime number theorem” for polynomials over finite fields:

Ik = [zk]I(z) ∼
qk

k



Erdős-Kac Type Theorem

By applying the above theorem for

P (z, u) = exp

∑
k≥1

uk

k
I(zk)


one obtains

Theorem [88]

The number of irreducible factors in a random polynomial over a finite

field satisfies a central limit theorem with mean and variance ∼ logn .

Theorem (for integers) [Erdős-Kac]

The number of prime factors in random integer ≤ n satisfies a central

limit theorem with mean and variance ∼ log logn .



Smooth Polynomials

A polynomial is m-smooth if all irreducible factors have degrees ≤ m.

Theorem [145]

The number Nq(n, m) of m-smooth polynomials of degree n over Fq

satisfies

Nq(n, m) = qnρ(n/m)
(
1 + O

(
logn

m

))
,

where ρ(u) denotes the Dickmann function

ρ(u) = 1 for 0 ≤ u ≤ 1
uρ′(u) = −ρ(u− 1) for u ≥ 1



Smooth Polynomials

Proof uses the GF for m-smooth polynomials

Nq(n, m) = [zn]Sm(z) = [zn]
1

1− qz

∏
k>m

(1− zk)Ik

and a proper contour integration.

This result generalizes previously known results (by Odlyzko etc.)



Largest Irreducible Factor

Theorem [145]

The largest degree Dn among the irreducible factors of a random poly-

nomial of degree n over Fq satisfies

P(Dn = m) =
1

m
f(m/n) + O

(
logn

m2

)
where f(u) = ρ(1/u1).

Proof is a precise analysis of Lm(z) = Sm(z)− Sm−1(z).

Extensions: joint Distribution of the Two Largest Degrees of Factors

etc.



Smooth Integers and Largest Prime Factor

A positive integer n is y-smooth if all prime factors are ≤ y.

Theorem (for integers)

• The number Ψ(x, y) of y-smooth integers ≤ x is given by

Ψ(x, y) = x · ρ(logx/ log y) + O

(
x

log y

)

• The largest prime factor Dn of an integer ≤ x satisfies

P(Dn ≤ nα) ∼ ρ(1/α)



Average Case Analysis of Factorization
Algorithm

A factorization algorithm in Fq[x] consists (usually) of three steps:

• ERF: elimination of repeated factors: O(n2)

• DDF: distinct degree factorizationon, produces polynomials where

all irreducible factors have same degree: O(n3)

• EDF: equal degree factorization: O(n2)

Theorem [127 163]

The expected costs for ERF, DDF and EDF are asymptotically given

by

En[ERF ] ∼ c1n2, En[DDF ] ∼ c1n3, En[EDF ] ∼ c3(1 + ξn)n
2,

where the constants c1, c2, c3 depend on q and |ξn| ≤ 1/3.



Average Case Analysis of Factorization
Algorithm

Proof uses proper generating functions (such as)

P (z, u) =
∏

n≥1

(
1 +

zn

1− unzn

)In

,

or

Pk(z, u) =
∏
j<k

(
1

1− zj

)Ij ∏
j≥k

(
1− uj zj

1− zj

)Ij

and a careful analysis.



Borrowed techniques

• continued fractions (usually used in Diophantine approximation)

[→ Viennot’s talk]

• elliptic (and other special) functions (usually used in Algebraic ge-

ometry)

This is not number theory but important concepts from number theory

are adopted to handle (analytic) combinatorial problems.
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Thanks!


