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Algorithms: are at the heart of virtually all computing technologies;

Combinatorics: provides indispensable tools for finding patterns and structures;

Information: permeates every corner of our lives and shapes our universe.



Three Theorems of Shannon

Theorem 1 & 3. [Shannon 1948; Lossless & Lossy Data Compression]

compression bit rate ≥ source entropy H(X)

for distortion level D:

lossy bit rate ≥ rate distortion function R(D)

Theorem 2. [Shannon 1948; Channel Coding ]

In Shannon’s words:
It is possible to send information at the capacity through the channel

with as small a frequency of errors as desired by proper (long) encoding.

This statement is not true for any rate greater than the capacity.



Theorem 1: Fundamental Limit

Prefix code is such that no codeword is a prefix of another codeword.

Kraft’s Inequality: A prefix code iff lengths ℓ1, . . . , ℓN satisfy1

2
lmax li–

i
∑ 2

lmax<li

lmax li–
∑N

i=1 2
−ℓi ≤ 1.

Shannon First Theorem: For any prefix code the average code length

E[L(C,X)] cannot be smaller than the entropy H(P ):

E[L(C,X)] ≥ H(P ) = −
∑

x∈A∗
P (x) logP (x).

1Flajolet and Prodinger, “Level number of sequences for trees”, Disc. Math., 1987.
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Asymptotic Equipartition Property:

Shannon-McMilan-Breiman:

− 1
n logP (Xn

1 ) → H(X) (pr.)

H(X) is the entropy rate.

Code Length: ⌈− logP (Xn
1 )⌉ ∼ nH(X).

AEP: Good set Gε
n: P (w) ∼ 2−nH(X)



Post-Shannon Challenges

1. Back off from infinity (Ziv’97): Extend Shannon findings to finite size data

structures (i.e., sequences, graphs), that is, develop information theory of

various data structures beyond first-order asymptotics.

Claim: Many interesting information-theoretic phenomena appear in

the second-order terms.

2. Science of Information:2 Information Theory needs to meet new

challenges of current applications in

biology, communication, knowledge extraction, economics, . . .

to understand new aspects of information in:

structure, time, space, and semantics,

and

dynamic information, limited resources, complexity, representation-

invariant information, and cooperation & dependency.

2Philippe’s email about an article in the CACM (Feb. 2011) about SoI: “That’s a great one. The thing

is intelligently done, does not over-sell. The writer is good too. That would almost make be believe in the

project. :-) Congrats also for the photograph (without a cap—good!).”
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Analytic Combinatorics+IT=Analytic Information Theory

• In the 1997 Shannon Lecture Jacob Ziv presented compelling

arguments for “backing off” from first-order asymptotics in order to

predict the behavior of real systems with finite length description.

• To overcome these difficulties, one may replace first-order analyses

by non-asymptotic analysis, however, we propose to develop

full asymptotic expansions and more precise analysis (e.g., large

deviations, CLT).

• Following Hadamard’s precept3, we study information theory problems

using techniques of complex analysis such as generating functions,

combinatorial calculus, Rice’s formula, Mellin transform, Fourier series,

sequences distributed modulo 1, saddle point methods, analytic

poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to information

theory, constitutes analytic information theory.4

• Philippe was the midwife and active participant of analytic information

theory since mid 90’s.

3The shortest path between two truths on the real line passes through the complex plane.
4 Andrew Odlyzko: “Analytic methods are extremely powerful and when they apply, they

often yield estimates of unparalleled precision.”



Some Successes of Analytic Information Theory

• Wyner-Ziv Conjecture concerning the longest match in the WZ’89

compression scheme (W.S., 1993).

• Ziv’s Conjecture on the distribution of the number of phrases in the LZ’78

(Jacquet & W.S., 1995, 2011).

• Redundancy of the LZ’78 (Savari, 1997, Louchard & W.S., 1997).

• Steinberg-Gutman Conjecture regarding lossy pattern matching

compression (Luczak & W.S., 1997; Kieffer, Flajolet, Yang, 1998;

Kontoyiannis, 2003).

• Precise redundancy of Huffman’s Code (W.S., 2000) and redundancy

of a fixed-to-variable no prefix free code (W.S. & Verdu, 2010).

• Minimax Redundancy for memoryless sources (Xie &Barron, 1997; W.S.,

1998; W.S. & Weinberger, 2010), Markov sources (Risannen, 1998;

Jacquet & W.S., 2004), and renewal sources (Flajolet & W.S., 2002;

Drmota & W.S., 2004).

• Analysis of variable-to-fixed codes such as Tunstall and Khodak codes

(Drmota, Reznik, Savari, & W.S., 2006, 2008, 2010).

• Entropy of hidden Markov processes and the noisy constrained

capacity (Jacquet, Seroussi, & W.S., 2004, 2007, 2010; Han & Marcus,

2007).

• . . .
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Source Coding and Redundancy

Source coding aims at finding codes C : A∗ → {0, 1}∗ of the shortest

length L(C, x), either on average or for individual sequences.

Known Source P : The pointwise and maximal redundancy are:

Rn(Cn, P ; xn
1) = L(Cn, x

n
1) + logP (xn

1)

R
∗
(Cn, P ) = max

xn1

{Rn(Cn, P ; x
n
1)}(≥ 0).

where P (xn
1) is the probability of xn

1 = x1 · · · xn.

Unknown Source P : Following Davisson, the maximal minimax redundancy

R∗
n(S) for a family of sources S is:

R∗
n(S) = min

Cn
sup
P∈S

max
xn1

[L(Cn, x
n
1) + logP (xn

1)].

Shtarkov’s Bound:

dn(S) := log
∑

xn1∈An

sup
P∈S

P (xn
1) ≤ R∗

n(S) ≤ log
∑

xn1∈An

sup
P∈S

P (xn
1)

︸ ︷︷ ︸
Dn(S)

+1



Outline Update

1. Shannon Legacy

2. Analytic Information Theory

3. The Redundancy Rate Problem

(a) Universal Memoryless Sources

(b) Universal Renewal Sources



Maximal Minimax for Memoryless Sources

For a memoryless source over the alphabet A = {1, 2, . . . ,m} we have

P (xn
1) = p1

k1 · · · pm
km, k1 + · · · + km = n.

Then

Dn(M0) :=
∑

xn1

sup
P (xn1 )

P (x
n
1)

=
∑

xn1

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
∑

k1+···+km=n

( n

k1, . . . , km

)

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
∑

k1+···+km=n

( n

k1, . . . , km

)(k1

n

)k1

· · ·
(
km

n

)km

.

since the (unnormalized) likelihood distribution is

sup
P (xn1 )

P (x
n
1) = sup

p1,...,pm

p
k1
1 · · · pkm

m =

(
k1

n

)k1

· · ·
(
km

n

)km



Generating Function for Dn(M0)

We write

Dn(M0) =
∑

k1+···+km=n

( n

k1, . . . , km

)(k1

n

)k1

· · ·
(
km

n

)km

=
n!

nn

∑

k1+···+km=n

k
k1
1

k1!
· · · k

km
m

km!

Let us introduce a tree-generating function

B(z) =

∞∑

k=0

kk

k!
z
k
=

1

1 − T (z)
, T (z) =

∞∑

k=1

kk−1

k!
z
k

where T (z) = zeT (z) (= −W (−z), Lambert’s W -function) that

enumerates all rooted labeled trees. Let now

Dm(z) =

∞∑

n=0

z
nn

n

n!
Dn(M0).

Then by the convolution formula

Dm(z) = [B(z)]m − 1.



Asymptotics for FINITE m

The function B(z) has an algebraic singularity at z = e−1, and

β(z) = B(z/e) =
1

√
2(1 − z)

+
1

3
+ O(

√

(1 − z).

By Cauchy’s coefficient formula

Dn(M0) =
n!

nn
[zn][B(z)]m =

√
2πn(1 + O(1/n))

1

2πi

∮
β(z)m

zn+1
dz.

For finite m, the singularity analysis of Flajolet and Odlyzko implies5

[zn](1 − z)−α ∼ nα−1

Γ(α) , α /∈ {0,−1,−2, . . .}

R
∗
n(M0) =

m − 1

2
log

(
n

2

)

+ log

( √
π

Γ(m2 )

)

+
Γ(m2 )m

3Γ(m2 − 1
2)

·
√
2

√
n

+

(

3 + m(m − 2)(2m+ 1)

36
−

Γ2(m2 )m2

9Γ2(m2 − 1
2)

)

· 1
n

+ · · ·

5Flajolet and Odlyzko, “Singularity Analysis of Generating Functions”, SIAMCOMP, 1990.
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Renewal Sources

The renewal process R0 (introduced in 1996 by Csiszár and Shields) defined

as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables

with distribution Q(j) = Pr{Ti = j}.

• In a binary renewal sequence the positions of the 1’s are at the renewal

epochs T0, T0 + T1, . . . with runs of zeros of lengths T1 − 1, T2 − 1, . . . .
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The renewal process R0 (introduced in 1996 by Csiszár and Shields) defined

as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables

with distribution Q(j) = Pr{Ti = j}.

• In a binary renewal sequence the positions of the 1’s are at the renewal

epochs T0, T0 + T1, . . . with runs of zeros of lengths T1 − 1, T2 − 1, . . . .

For a sequence

xn
0 = 10α110α21 · · · 10αn1 0 · · · 0︸ ︷︷ ︸

k∗

define km as the number of i such that αi = m. Then

P (xn
1) = [Q(0)]k0[Q(1)]k1 · · · [Q(n − 1)]kn−1Pr{T1 > k∗}.

Theorem 2 (Flajolet and W.S., 1998). 6 Consider the class of renewal

processes. Then

R∗
n(R0) =

2

log 2

√
cn + O(log n).

where c = π2

6 − 1 ≈ 0.645.

6Flajolet and W.S., “Analytic Variations on Redundancy Rates of Renewal Processes” IEEE IT, 2002.



Maximal Minimax Redundancy

It can be proved that

rn+1 − 1 ≤ Dn(R0) ≤
n∑

m=0

rm

where rn =
∑n

k=0 rn,k and

rn,k =
∑

P(n,k)

( k

k0 · · · kn−1

)(k0

k

)k0
(
k1

k

)k1

· · ·
(
kn−1

k

)kn−1

where P(n, k) is is the integer partition of n into k terms, i.e.,

n = k0 + 2k1 + · · · + nkn−1, k = k0 + · · · + kn−1.

But we shall study sn =
∑n

k=0 sn,k where

sn,k = e
−k
∑

P(n,k)

kk0

k0!
· · · k

kn−1

kn−1!
,

rn,k

sn,k
=

k!

kke−k

since

S(z, u) =
∑

k,n

sn,k(u/e)
kzn =

∑

Pn,k

z1k0+2k1+···
(
u

e

)k0+···+kn−1 kk0

k0!
· · · k

kn−1

kn−1!
=

∞∏

i=1

β(ziu).



Refined Main Results

Theorem 3 (Flajolet and W.S., 1998). We have the following asymptotics

(c = π2

6 − 1 ≈ 0.645)

sn ∼ exp

(

2
√
cn − 7

8
logn + O(1)

)

,

log rn =
2

log 2

√
cn − 5

8
logn +

1

2
log logn + O(1).

Asymptotic analysis is sophisticated and follows these steps:

• first, we transform rn into sn that we know how to handle and we know

how to read back results for rn from sn;

• use combinatorial calculus to find the generating function of sn, which

turns out to be an infinite product of tree-functions B(z) defined above;

• transform this product into a harmonic sum that can be analyzed

asymptotically by the Mellin transform;

• obtain an asymptotic expansion of the generating function around z =

1 which is the starting point to get asymptotics of the coefficients;

• finally, estimate R∗
n(R0) by the saddle point method.



Translating sn into rn

To compare sn to rn, we introduce the random variable Kn as follows

Pr{Kn = k} =
sn,k

sn
.

Stirling’s formula yields

rn

sn
=

n∑

k=0

rn,k

sn,k

sn,k

sn
= E[(Kn)!K

−Kn
n e

Kn] = E[
√

2πKn] + O(E[Kn
−1
2]).

Lemma 1. Let µn = E[Kn] and σ2
n = Var(Kn).

(by saddle point method)

sn = [zn]S(z, 1) = [zn] exp
(

c
1−z + a log 1

1−z

)

and µn = 1
4

√
n
c log

n
c + o(

√
n) while σ2

n = O(n log n) = o(µ2
n), where

c = π2/6 − 1, d = − log 2 − 3
8 log c − 3

4 log π.

Thus

rn = snE[
√

2πKn](1 + o(1)) = sn
√

2πµn(1 + o(1)).



Thank you, Philippe . . .

. . . for long standing support, friendship, and sharing your knowledge!

Merci au bon docteur Flajolet. We will miss you!


