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» Discovered by De la
Briandais (1959) et
Fredkin (1960)

» Principles attributed to
Thue (1912) by Knuth.

» TRIE = TRee +
reTRIEval.

» Based on the thumb rule
in a dictionary

» Dynamical structure

» The analyses of digital

tree processes pervade
Philippe Flajolet’s work.
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» Tries as a data structure

» Tries as a partitioning digital process

The digital tree process gave rise to many algorithmic variants:
Q PATRICIA trees,
Q digital search trees
Q LC-tries
@ hybrid trie structures (e.g., array-trie, bst-trie, list-trie)

E.g., Digital Search Trees Revisited, PF and R. Sedgewick (1986);
and The Analysis of Hybrid Trie Structures (1998) and Dynamical Sources
in Information Theory (2001), both by J. Clément, PF, and B. Vallée.
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Tries are dynamic data structures that store randomly generated words.
“Dynamic” because tries grow as more words are inserted.

First paragraph of Moby Dick (H. Melville)

figure ©R. Sedgewick
Parameters: size (memory usage), external path length (searching), height
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Conceptually, the digital tree process can appear at unexpected places,
and Philippe liked that a lot.

>

>

»

recursive definition — functional equations via generating functions.
database management; data mining

data compression; closely related to Lempel-Ziv schemes
efficient communication protocols; conflict resolution
leader election and connections to distributed computing
probabilistic counting

hashing; bucket sorting (e.g., > 1 string per leaf)
polynomial factorization

dictionary

sorting and searching [Knuth 73]

set intersection, set union [Trabb Pardo 78]

multiway branching for generalized (non-binary) alphabet
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A Recursive Partitioning Process of Computer Science (with D. Sotteau,
2nd World Conf. Math. at the Service of Man, 1982):

(Uncompressed!) Trie for sequences

A=111 ... D=10...
B =011 ... E =1100...
C =1101... F =010...

The splitting groups are “the ‘heads’ group and the ‘tails’ group.”

Much later, for instance, in The Ubiquitous Digital Tree (STACS, 2006),
he defines a trie recursively. For a set of strings w,
0 if w=10,
trie(w) =< o if w={o}, (1)
(o, trie(w \ 0), trie(w \ 1))
“The motto here is thus simply ‘filter and shift left’.”
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From Philippe's “Saga of Digital Trees”, part of the Colloquium for
Jacques Morgenstern in 2003:

Compare-exchange based on successive bifs of data.
place 0’'s on left, 1’s on right;

recurse.

The trie splitting process (Fredkin)
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One of Philippe’s tries (TikZ rendering, used in several of his talks) built
on 500 uniform binary sequences, with 741 internal nodes, and height 17:
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The probability models for tries assume independence between the strings
stores at the leaves.

The characters within the string may be indep., uniform (i.e.,
p =g =1/2), indep., biased (p # q), or have Markov dependence, or
even have a dynamical source.

Philippe's work also laid a foundation for analysis of suffix trees, in which
the strings are dependent: they are suffixes of a common string. [E.g.,
Nicodeme; Jacquet, Szpankowski; J. Fayolle, MDW ]

First-order, expected behavior of suffix tree parameters often agrees with
analogous behavior for tries built over independently-generated strings.

First-order variance, higher moments, and also second-order terms of
expectation, are often different in suffix trees vs tries built over

independent strings.
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X1, X2, X3,...=0,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0, ...

Suffixes of the sequence:
5 =0,1,0,1,1,0,...

S, =1,0,1,1,0,0,
S; =0,1,1,0,0,1,.
Sy =1,1,0,0,1,1,.
Ss =1,0,0,1,1,1,.
Se =0,0,1,1,1,1,
S; =0,1,1,1,1,0,.
Ss =1,1,1,1,0,0,.
So =1,1,1,0,0,0,

Si0=1,1,0,0,0,0, ...
Si1 =1,0,0,0,0,0,...
S1»=10,0,0,0,0,1,...
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We see Philippe building on algebraic properties, e.g., set constructions,
multisets, translations to generating functions, and complex-valued
analysis [inheriting from De Bruijn, Knuth, Henrici, others].

“The power [of these results] comes from the fact that most parameters of
interest on trees are definable as additive-multiplicative combinations of
similar or simpler parameters on subtrees, so that a large number of
equations can be written systematically.”

[PF, D. Sotteau 1982; emphasis added]

Philippe uses generating functions to unify earlier analyses of
» the family of sets whose associated tree has height < k
» generalized versions for leaves with < b nodes (buckets)
» total number of nodes in tree when height is < k

> path length
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In 1982, Philippe was already synthesizing connections among different
analysis of tries
» Collision resolution in networks [G. Fayolle, PF, M. Hofri 1982]

» Time to resolve n collisions in an open stack protocol network:
an = An+ ng(n) + O(n/ log n)

» Digital sorting and searching [Knuth 1973]
» Dynamic Hashing [PF, J. M. Steyaert 1982]
» Polynomial Factorization [PF, J. M. Steyaert 1982]

The function ¢(n) is a fluctuating function with small amplitude.
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Commonalities: Trie arise in unexpected situations. The analysis often
concerns asymptotic properties of a trie parameter (often called valuations

by Philippe), e.g.,
» path length: sum (over all leaves) of distances from the root to the
leaves,
» total number of nodes: also called the size of the tree,
» height: maximum distance from root to a leaf,
» number of unary nodes (leaves),
Philippe was a master at synthesizing ideas and making generalizations of

results, especially results that were previously only known in special cases
or certain situations.
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Unbiased memoryless source p = 1/2.

This decomposition gives for path length

n n
Ln=_n_+ Z (QL,,) (Lk + L)
toll k=0

, ] Beveal
}m@m

So that: R
L(z) =3 50 LnZr = (€% — 1) + 2¢7/?L(2/2).
Iterating we obtain

TRael —  m R meb L(z) = Zz(ez - e(l_zi")z).
k>0

N.B. An harmonic sum ! (see talk by P. Dumas)
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Fundamental generalization:

For recursively defined parameters, the trans-

lation schemes (17), (18) lead to functional difference
equations of the form :

¢ () = a(x) ¢(§) + b(x) . (19)

The a, b are toll functions that depend on the trie parameter.

These can normally be solved by iteration, so
that
Lkl .
b)) = L b&x2 ™ N a2 .
k>0 j=0

In the frequent case a(x) = Aecx, (20) further
simplifies to

s = ¥ A% be2™) expc1-270) (20)
k>0
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For the path length S,:

Such periodicities are of frequent occurrence in
the analysis of algorithms and they have here a clear
origin in regularly spaced singularities of functions

of the type (1—23)_1. An alternative derivation, which

avoids the exponential approximation is based on the
observation that Sn is itself a harmonic sum :

-k, -1
S(x) = (e X1o8(172) 1y

Philippe was using saddle points, Mellin transform, and making precise
characterization of periodicities, in 1982, more than 10 years before the
first Analysis of Algorithms meeting.
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Mean Value AlgDePo Mean Value
in the Poisson model = in the Bernoulli model

| | i

Asymptotic Mean Value AnDePo Asymptotic Mean Value
in the Poisson model = in the Bernoulli model

FIGURE 11. Possible ways to obtain the asymptotic mean value in

the Bernoulli model from the exact mean value in the Poisson
model.
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The precise analysis of trie parameters demands careful handling of
fluctuations. E.g., the expected size (number of nodes) in a trie built over
uniform binary sequences is

é(l + e(lgn)) + o(n),

where €(x) is again a fluctuating function with amplitude less than 1075.
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In the three decades since the early 1982 paper, Philippe became a master
of the analysis of generating functions, and he went on to characterize
many trie parameters under more complicated probabilistic assumptions.

We briefly outline the way that the analysis changes, depending on the
branching probabilities p1, p2, ..., pm related to the m letters in the
alphabet (e.g., m = 2 in the binary case)

When the trie is built over uniform binary sequences, the oscillating term
arises from the appearance of complex poles, for instance, at

2ikm

— k eZ.
log2’ <

Zk:—].
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Oscillations also arise in the asymptotic growth of parameters of tries built
over non-uniform tries (i.e., biased probability model).

E.g., the expected size of a trie with branching probabilities p, g such that
| .
% €Qis
n
~ ﬁ(l + €(In n)),

where € is oscillating with small amplitude, and

H = plog(1/p) + qlog(1/q)

is the entropy of the source that generates the strings.

When :ggg ¢ Q, the expected size is ~ n/H, with no oscillations in the

leading term.
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In b-tries, there are < b strings per leaf (rather than one string per leaf).

The probability that a b-trie on n strings has height < h is

b u(n)y—bs
exp (—%) (1+ O((log )**1/ /%),

where u(n) is the fractional part of (1 + 1/b)log, n, and
d=h—[(1+1/b)logyn|, and his in a central region around
(1+1/b)log, n.

The average height is H, = (1 +1/b)log, n+ P((1+ 1/b)log, n) + o(1)
where P is periodic.

The average size is Sy = Q((1 + 1/b) logy n)n*T1/2(1 4+ O(1/(log n)P~1)),
where @ is periodic.
Clément and Ward (CNRS / Purdue) The Digital Tree Process



» 1965, De Bruijn, Knuth analyze tries built over uniform strings,
p = g = 1/2; oscillations exhibited
» 1973: Knuth (TAOCP, vol. 2) discusses biased case

» 1982: PF makes connections among several types of related analysis;
towards systematic treatments

» 1986: Fayolle, PF, Hofri study periodicity criterion, see also
Schachinger [2000], and Jacquet, Szpankowski, Tang [2001]

» 1990-2000: Convergence to asymptotic regime often wrongly assumed
to be fast. Caveats by Schachinger (2000).

» 2010: PF, Roux, Vallée, convergence to asymptotic regime is very
slow and depends on fine arithmetic properties of probabilistic model.
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> If %’i are rational for all 1 <, k < m, expected size has first-order

periodicities: S, = % + n¢(log n) + O(n*=4), for A > 0, where
H =73 pjlog(1/p;) is the entropy of the source.

logp; . - . . .
» If at least one lo:gk is irrational, then expected size is:

Sn =75 + O(nexp(—/logn)), for 6 > 1. “This is better than
n/(log n)?, any a; much worse than n*=¢, any €.” (“no oscillation,
but poor error term” )

» “For remaining ‘Liouvillean sources’ (rare), error term can come
arbitrarily close to o(n).”

Of course, the set {(pl, ..., Pm) | at least one of %’i— is irrational} has

measure 1 in the m-ary space of all m-tuples. So this is actually the
general situation.
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The geometry of the poles
1
L—pi— P
plays a central role in asymptotic analysis. See especially Digital Trees and

Memoryless Sources: from Arithmetics to Analysis, PF, M. Roux,
B. Vallée, 2010.

I(s)
1+ 5 +iT)

The importance of the
geometry during inverse
‘ Mellin analysis. Need in-
+1 ‘ R(s) tegration path avoiding
poles and estimates of

global contributions.
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-
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Philip loved to check theoretical, asymptotic results using empirical
sources or simulations. E.g., The Analysis of Hybrid Tree Structures by
J. Clément, P. Flajolet, B. Vallée [SODA, 1998]

e

<=

Moby Dick data. The evolution of insertion costs [left: array-trie, middle: list-trie, right: bst-trie), or
equivalently negative search costs, shows an unclear tendency to increase as the number of data items n increases,
and there is a fairly large variability of numerical data,

2
2
1
1
1
1
1

NAOOONAADON

The presentation obtained by plotting against logn the costs averaged over successive batches of 10 insertions
exhibits more clearly the logarithmic trends,

40
35§
30
25
20
15§

Z a 3 8 10 Z E) 3 8 To
and leads to empirical formula for the search costs in array-tries, list-tries, and bst-tries:

E.[R°|~08logn, E.[R*)~30logn, E.[R]~10logn.
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Philippe Flajolet

Philippe, you are greatly missed.

Your friendship, guidance, and leadership will never be forgotten.
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