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Introduction

I Discovered by De la
Briandais (1959) et
Fredkin (1960)

I Principles attributed to
Thue (1912) by Knuth.

I trie ≡ tree +
retrieval.

I Based on the thumb rule
in a dictionary

I Dynamical structure

I The analyses of digital
tree processes pervade
Philippe Flajolet’s work.

Clément and Ward (CNRS / Purdue) The Digital Tree Process December 16, 2011 2 / 26



Two points of view

Tries
I Tries as a data structure

I Tries as a partitioning digital process

The digital tree process gave rise to many algorithmic variants:

1 PATRICIA trees,

2 digital search trees

3 LC-tries

4 hybrid trie structures (e.g., array-trie, bst-trie, list-trie)

E.g., Digital Search Trees Revisited, PF and R. Sedgewick (1986);
and The Analysis of Hybrid Trie Structures (1998) and Dynamical Sources
in Information Theory (2001), both by J. Clément, PF, and B. Vallée.
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Fully Dynamic Dictionary Structure

Tries are dynamic data structures that store randomly generated words.
“Dynamic” because tries grow as more words are inserted.

First paragraph of Moby Dick (H. Melville)

figure c©R. Sedgewick

Parameters: size (memory usage), external path length (searching), height
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Motivations

Conceptually, the digital tree process can appear at unexpected places,
and Philippe liked that a lot.

I recursive definition → functional equations via generating functions.

I database management; data mining

I data compression; closely related to Lempel-Ziv schemes

I efficient communication protocols; conflict resolution

I leader election and connections to distributed computing

I probabilistic counting

I hashing; bucket sorting (e.g., > 1 string per leaf)

I polynomial factorization

I dictionary

I sorting and searching [Knuth 73]

I set intersection, set union [Trabb Pardo 78]

I multiway branching for generalized (non-binary) alphabet
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Recursive Definition

A Recursive Partitioning Process of Computer Science (with D. Sotteau,
2nd World Conf. Math. at the Service of Man, 1982):

A RECURSIVE PARTIONNING PROCESS

OF COMPUTER SCIENCE

Phi Zippe FLAJOLET
INRIA - Rocquencourt

78150 Le Chesnay (France)

ABSTRACT

We informally review some of the algebraic and
analytic techniques involved in investigating the pro-
nerties of a combinatorial process that appears in very
,.1 'ferse contexts in computer science including digital
sorting and searching, dynamic hashing methods, communi-
cation protocols in local networks and some polynomial
factorization algorithms.

1 - INTRODUCTION

The basic combinatorial process which is studied
here is the following : one starts with a finite set of
individuals ; in the first stage each individual tosses
a coin ; individuals are then split into two groups :
the "heads" group and the "tails" group. Each subgroup
then recursively repeats the process until some termi-
nation condition is met. Various control policies are
conceivable. The simplest ones are :

- halting the process for groups that are of size
I.

- halting the process for subgroups that reach a
size less than or equal to a fixed integer b.

One may also consider situations where biased or
unbiased coins are used, cases where dice of various
configurations are used, or situations where the set of
individuals varies dynamically.

The succession of splittings can easily be descri-
bed in the form of a tree. A group X created at some
stage of the partitionning process is represented by a
node in the tree ; if X is split into XH (the heads
group) and XT (the tails group), then XH is representedas the left son-node of XH and XT is represented as theright-son node of X. Figure I represents a possible par-
titionning tree when the process is stopped on subgroups
of size I.

Figure I : A recursive partitionning tree on the set
tA,B,C,D,E,F}. Terminating subgroups are represented by

Dominique SOTTEAU
LRI - Universite Paris-Sud
91405 Orsay (France)

This process appears to underlie a large number of
computer algorithms which we now mention

(i) Collision resolution in networks : In a decentra-
lized network, several users have access to a common
channel which they use to broadcast information and on
which collisions that occur have to be resolved. Basi-
cally, when a collision occurs, colliding senders sepa-
rate themselves into two groups (using a stochastic
decision procedure). Members of the first group first
recursively resolve their conflicts and broadcast, and
members of the second group wait until the channel is
free to transmit. These protocols are considered for
instance in [Ca 79], [TV 80], [FH 81].

(ii) Digital sorting and searching : The prototype is
digital sorting (see [Kn 73] for several applications)
to sort a set of binary sequences, one first separates
them into two groups depending on the values of their
leading. digit. One then recursively proceeds to recursi-
vely sort each of the two groups on their next leading
digits. The algorithm is isomorphic to the construction
of a digital search tree -or "trie"- op. a set of binary
sequences.

(iii) Dynamic Hashing : Such algorithms are used to ma-
nage large files kept on secondary storage ([Li 78],
[La 78], [FNPS 79]). Larson.' s dynamic hashing algorithms
starts like classical hashing with a fixed page capacity
(or bucket size) b. 'When a bucket overflows, the hashing
function is refined locally on this bucket, and two new
buckets are allocated. A tree -called the index- retraces
the history of successive splittings and is used to gua-
rantee direct access to records on the secondary storage
device.

(iv) Polynomial Factorization : Some recent developments
of Berlekamp's Factorization algorithm for polynomials
over a finite field due to Cantor, Zassenhauss [CZ 81]
and Lazard [La 81] are based on an iterative construc-
tion of primitive idempotents. The construction is a
refinement process that can be shown equivalent to the
generation of a partition tree with biased probabilities
on splittings.

Most of the characteristic parameters of these
algorithms are expressible in terms of classical para-
meters of the corresponding partition tree, like : path
length, number of nodes, height, number of unary nodes,
left path length ••• We thus examine in the next sections
general methods for the analysis of these parameters.

2 - ALGEBRAIC METHODS

Developments in this section permit, in a large
number of cases, to in a simple, and quasi-
automatic, way generating functions associated to para-
meters of partition trees. We USe the classical repre-
sentation of finite sets of (finite or infinite) binary
sequences by trees. With O's corresponding to a left
branching edges and a I's to right branching edges, the
tree of Figure I would be associated to any set of se-
quences of the form :

<:'5

(Uncompressed!) Trie for sequences
A = 111 . . . D = 10 . . .
B = 011 . . . E = 1100 . . .
C = 1101 . . . F = 010 . . .

The splitting groups are “the ‘heads’ group and the ‘tails’ group.”

Much later, for instance, in The Ubiquitous Digital Tree (STACS, 2006),
he defines a trie recursively. For a set of strings ω,

trie(ω) :=


∅ if ω = ∅,
σ if ω = {σ},
〈•, trie(ω \ 0), trie(ω \ 1)〉

(1)

“The motto here is thus simply ‘filter and shift left’.”
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Recursive Description of Tries

From Philippe’s “Saga of Digital Trees”, part of the Colloquium for
Jacques Morgenstern in 2003:

1950’s: Scientific computing meets information
processing non-numerical data, esp. Sorting &
Searching.

First algorithms deal with sorting and searching.

Radix-exchange sort (H&I)

a b

a ?? b

Compare-exchange based on successive bits of data.
place 0’s on left, 1’s on right;

recurse.

The trie splitting process (Fredkin)

0 1

Separate recursively based on successive bits of data.

15
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Example

One of Philippe’s tries (TikZ rendering, used in several of his talks) built
on 500 uniform binary sequences, with 741 internal nodes, and height 17:

6 P. Flajolet

Fig. 1. A random trie of size n = 500 built over uniform data

of linear growth, despite the absence of convergence to a constant occupation ratio.
The path length estimate means that the trie is nearly optimal in some information
theoretic sense, since an element is typically found after ∼ lgn binary questions.
The profile of random trie under this model is displayed in Figure 1.

The ε-fluctuation, with an amplitude of 10−5, in the asymptotic behaviour of
size tends to be quite puzzling to programmers. Undeniably, such fluctuations
will never be detected on simulations not to mention executions on real-life data.
However, mathematically, their presence implies that most elementary strategies
for analysing trie algorithms are doomed to failure. (See however [55, p. 403] for
an elementary approach.) It is a fact that no coherent theory of tries can be
developed without taking such fluctuations into account. For instance, the exact
order of the variance of trie size and trie path length must involve them [41,42].
As a matter of fact, some analyses, which were developed in the late 1970s and
ignored fluctuations, led to wrong conclusions, even regarding the order of growth
of important characteristics of tries.

Back to modelling issues, the uniform model seems at first sight to be of
little value. It is however fully justified in situations where elements are ac-
cessed via hashing and the indications it provides are precious: see for in-
stance the discussion of dynamic and extendible hashing in Section 4. Also, the
Mellin transform technology is equally suitable for extracting asymptotic infor-
mation from the baised Bernoulli model (p "= q). In that case, it is found that,
asymptotically2

2 The symbol ‘∼’ is used throughout in the strict sense of asymptotic equivalence;
the symbol ‘≈’ is employed here to represent a numerical approximation up to tiny
fluctuations.
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Probability Models

The probability models for tries assume independence between the strings
stores at the leaves.

The characters within the string may be indep., uniform (i.e.,
p = q = 1/2), indep., biased (p 6= q), or have Markov dependence, or
even have a dynamical source.

Philippe’s work also laid a foundation for analysis of suffix trees, in which
the strings are dependent: they are suffixes of a common string. [E.g.,
Nicodème; Jacquet, Szpankowski; J. Fayolle, MDW.]

First-order, expected behavior of suffix tree parameters often agrees with
analogous behavior for tries built over independently-generated strings.

First-order variance, higher moments, and also second-order terms of
expectation, are often different in suffix trees vs tries built over
independent strings.
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Comparison with Suffix Trees

X1,X2,X3, . . . = 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, . . .

Suffixes of the sequence:
S1 = 0, 1, 0, 1, 1, 0, . . .
S2 = 1, 0, 1, 1, 0, 0, . . .
S3 = 0, 1, 1, 0, 0, 1, . . .
S4 = 1, 1, 0, 0, 1, 1, . . .
S5 = 1, 0, 0, 1, 1, 1, . . .
S6 = 0, 0, 1, 1, 1, 1, . . .
S7 = 0, 1, 1, 1, 1, 0, . . .
S8 = 1, 1, 1, 1, 0, 0, . . .
S9 = 1, 1, 1, 0, 0, 0, . . .
S10 = 1, 1, 0, 0, 0, 0, . . .
S11 = 1, 0, 0, 0, 0, 0, . . .
S12 = 0, 0, 0, 0, 0, 1, . . .

1

S1

S1

0

S2

1

S1

0 1

S2

0

S3

1

S1

0 1

0
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0
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0
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0
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1

1

S1

0 1
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0
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1

1

0

0

S11

0

S5

1

S2

1

1

0

0

S10

0

S4

1

1

S9

0
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1
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“A Recursive Partitioning Process of Computer Science”

We see Philippe building on algebraic properties, e.g., set constructions,
multisets, translations to generating functions, and complex-valued
analysis [inheriting from De Bruijn, Knuth, Henrici, others].

“The power [of these results] comes from the fact that most parameters of
interest on trees are definable as additive-multiplicative combinations of
similar or simpler parameters on subtrees, so that a large number of
equations can be written systematically.”
[PF, D. Sotteau 1982; emphasis added]

Philippe uses generating functions to unify earlier analyses of

I the family of sets whose associated tree has height ≤ k

I generalized versions for leaves with ≤ b nodes (buckets)

I total number of nodes in tree when height is ≤ k

I path length
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“A Recursive Partitioning Process of Computer Science”

In 1982, Philippe was already synthesizing connections among different
analysis of tries

I Collision resolution in networks [G. Fayolle, PF, M. Hofri 1982]
I Time to resolve n collisions in an open stack protocol network:
αn = An + nφ(n) + O(n/ log n)

I Digital sorting and searching [Knuth 1973]

I Dynamic Hashing [PF, J. M. Steyaert 1982]

I Polynomial Factorization [PF, J. M. Steyaert 1982]

The function φ(n) is a fluctuating function with small amplitude.
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Some Trie Parameters

Commonalities: Trie arise in unexpected situations. The analysis often
concerns asymptotic properties of a trie parameter (often called valuations
by Philippe), e.g.,

I path length: sum (over all leaves) of distances from the root to the
leaves,

I total number of nodes: also called the size of the tree,

I height: maximum distance from root to a leaf,

I number of unary nodes (leaves),

Philippe was a master at synthesizing ideas and making generalizations of
results, especially results that were previously only known in special cases
or certain situations.
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Basic recurrence (binary case)

Unbiased memoryless source p = 1/2.

This decomposition gives for path length

Ln = n︸︷︷︸
toll

+
n∑

k=0

(n
k

)
2n

(Lk + Ln−k)

So that:
L̂(z) =

∑
n≥0 Ln

zn

n! = z(ez − 1) + 2ez/2L̂(z/2).
Iterating we obtain

L̂(z) =
∑
k≥0

z(ez − e
(1− 1

2k
)z

).

N.B. An harmonic sum ! (see talk by P. Dumas)
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Functional Equations [PF, D. Sotteau 1982]

Fundamental generalization:

where Iwl is the number of sequences in wand [xn] f(x)
is the coefficient of xn in f(x).

(
s ) s-I (S s-j)LCE(s); 2 -I 2s (s+1) _ 2s L 2-2

n n-I . n-l);0

5. Path length is another parameter of interest
since it is related to the time necessary for sorting
a set of sequences by constructing the associated tree.
From the classical inductive definition of path length,
we find equations similar to those of part (4) above,
and solving one has for the cumulated path length of
trees constructed on n binary ,

(8)2s(I+x)

I. The
from (5)

pes) (x) ;

Equations obtained in this way are much simpler
and can usually be solved by iterating the recurrence
on s. We give below a few examples:

univariate generating polynomial of pes) is

.and accordingly the number of n-subsets of B(s) is

2
s

(n
2S
)[xn] (I+x)

(s)2. Let Pk be the family of sets whose associated
tree has he1ghtS k. Clearly

pes) + L x
o ueB(s) u

p(s+I)(X) a (p(s)(X» a (p(s)(X»
k+l 0 k 1 k

For a fixed cardinality n, letting s tend to
infinity, one notices that average values of most prac·
tical parameters on trees tend to well defined limits.
These limiting values coincide with the average values
of the corresponding parameters on trees constructed
from infinite sequences, under the usual statistic on
{0;1}00 (The trees are finite with probability I).
They are also useful as they constitute good approxi-
mations to the finite case.when n«2 s and are them-
selves easier to estimate by the methods of section 3.

For a parameter TI(s) on p(s), we define the cumu-
lative values

and the probability that a set of n sequences of length
• gives rise to a tree of height skis :

3. Similarly if the tree growth is stopped when
groups have size S b, the probability that the height
is S k for a tree formed with n sequences is

(16)

(IS)

lim
s--

L TI (s) (w)
Iwl;n
weP(s)

and we are interested in computing the (of
which we assume the existence) :

(10)

(9)

so that

pes) ; (1+2s-k x)2
k

k

Lemma 2 : The average values of parameters correspon-
ding to infinite sequences have exponentiel generating
function given by :

where n
n(oo) (z) ; L n(oo) z

n n!
lim n(s) .
s-- 2

whence the equations

The equation can be solved by iteration, and we.

+ 1 - 0lwl,O - 0lwl,1 '

(18)

one has for the associated exponential generating
functions

A(00) (x) ; eX/ 2 (v(00)(I) + W(OO) (I) ) ;

B(OO)(x) ; v (00) (I) . W(OO)(I)

in accordance with Lemma 2.

In particular the generating function
of the parameter pew) _ I is eX and one has

eX ; lim
s-- 2

a(w) ; v(w/O) + w(w/I) ; b(w); v(w/O) . w(w/O), (17)

For recursively defined parameters, the trans-
lation schemes (17), (18) lead to functional difference
equations of the form .

<flex) ; a(x) + b(x) . (19)

Lemma 2 used in conjunction with Lemma I permits
a direct calculation of generating functions associated
to parameters defined on Q:)(B(oo» (finite sets of
infinite sequences). So that, if :

(I3)[2 j + 2s (2
S
:=:-j)]

find

4. The previous examples showed the use of the pro-
duct rule of Lemma I. A large number of parameters of
interest in applications are defined as additive and
multiplicative combinations. The simplest example is the
statistics of the total number of nodes in the tree cons-
tructed from binary sequences of fixed length. This para-
meter no(w) is defined by the recurrences

no(O) (w) ; Iwl

no(s+1) (w) noes) (w\O) + noes) (w\I)

27

The a, b are toll functions that depend on the trie parameter.

that
These can normally be solved by iteration, so

whose Taylor coefficient have an explicit form. Some
examples follow :

In tge frequent case a(x) = Aecx , (20) further
simplifies to (25)

+ I - 0 - 0 + 0 °Iwl,O Iw'I,O Iwl,O Iw'I,O

I(w,w') = I(w\O, w'\O) + I(w\l, w'\I)

with the corresponding computation time

wnw' = 0 0 (W\0 n w'\O) + 0 j (w\1 n w'\I)

(ii) Extension to functions of several sets of binary
sequences n applications, these occur for instance in
algorithms for performing set-theoretic operations (see
[TP ] for several examples). Thus using trees to
compute the intersection of two sets W, w' by the
relation

(20)4>(x) = L Ak b(x2-k ) exp(c(I-2-k)x)
k;o,O

k-I
¢(x) L b (x2-k) n a (x2-j)

k;o,O j=O

I. The cumulative distribution of height in trees
corresponding to Example 3 of the finite case, becomes
in the infinite case :

2

k

where

we find for the bivariate exponential generating
fonction :

I(oo)(x,y) = 2ex/ 2 ey / 2 I(I' f) + (eX_I) (eY-I) (26)

This equation can be solved by techniques described
above.

(21)

which agrees with the classical result on occupancy
problems in probability theory.

(iii) Variances and higher moments can also be derived.
With q a formal variable, we have for external path
length:
e(w) e(w/O) e(w/I) Iwl -olwl,1q = q q q q

2. External path length leads to the equation

4>(x) = 2ex / 24> + x(ex_I),
2

whence for the bivariate generating function of proba-
bilities the recurrence

L (s) (z;q) = (Ls- I ) (qz,q»2 + 2s q(l-q)z .•.

which when solved by (20) (21) leads to the two equiva-
lent forms

Example j above appears in the analysis of exten-
dible hashing [FS 82] ; Example 2 is a classical result
[Kn 73].

(
n-I)n L 1-(I-2-k )

k;o,O

t (n)
p=2 p 2P -I

(22)

3 - ANALYTIC METHODS

3.1 - Multiplicative valuations

Purely multiplicative valuations on trees lead to
generating functions that have product forms. A typical
example is tree height with equations (9), (II), (21),
(24). The saddle point method is well suited to the
derivation of limit distributions (whence averages and
variances). The starting point is Cauchy's integral
form of coefficients of analytic functions :

Amongst the several possible extensions of these
algebraic methods, we mention:

(i) Translation schemes corresponding to a biased
distribution on bits of sequences. For instance, in the
infinite case, if p and q are the probabilities of zeros
and I respectively, then (17) translates into:

A(oo)(x) = eqx V(00) (px) + ePx W(OO) (qx)

1 f dz= --- f(z) ----
2" n+1
111 r z

which can be put under the formf eh(z) dz

(27)

For instance if. hm(w) is j if the height of the
tree associated to w 1S S m and 0 otherwise, we have

This result is used in [FS 82] to analyze a poly-
nomial factorization algorithm. The methods extend to
alphabets of cardinality larger than 2.

One proves in this way [FS 82] that the probabi-
lity of having a tree of height S m with n keys when
subtrees of size S b are grouped in a single leaf (page)
satisfies :

The saddle point heuristic (see [He 78])
consists in selecting for r a contour that crosses some
saddle point of h(z), i-e a point s such that h'(s) = 0

In the case of integrals of the form (27) with f
an entire function depending on a parameter, a tircle
centered around the origin and crossing the saddle
point of smallest modulus leads to good localization
properties of the integral (27) : the main contribution
is shown to come from a small fraction of the contour
around the saddle-point ; there local expansions are
used to approximate the integral.

(23)

(24)
m
n
k=O

H(OO) (x)
m

H(OO) (x)
m

whence

28
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Analysis of Periodicities [PF, D. Sotteau 1982]

For the path length Sn:

T(x) = L.
k;'O

m
1f
n

(28)

In the case of
-x2-k
e - I,

one finds :

and Sen) a bounded fluctuating function of n. This for-
. . h m m-l h kmula shows 1n part1cular t at 1f n-nn as a strong pea

around 10g2n, with periodicities (in n) appearing
in the probability distribution.

- I < Re(s) < 0

This function has a double pole at s
poles at

o and simple

3.2 - Additive valuations 2ikn
s = 10g2 ' k E Z/{O} .

An expression like (30)belongs to the category of
harmonic sums of the general form

The classical way of dealing with such sums is
first to introduce an exponential approximation, using

Let us last mention that the results of the expo-
nential'approximations (30) coincides in a large number
of cases with expressions derived by assuming the se-
quences to be generated by a Poisson process.

the sum being a Fourier series in 10g2n.

Such periodicities are of frequent occurrence in
the analysis of algorithms and they have here a clear
origin in regularly spaced singularities of functions
of the type (1-2 S )-I. An alternative derivation, which
avoids the exponential approximation is based on the
observation that S is itself a harmonic sum :

n

which can be dealt with by the preceding techniques,
leading sometimes to simpler derivations.

-k -I
sex) = L(e-xlog (I-2 ) - I)

Hence,

IT(x) = - 10g2x + 2 - y

+ _1_ L r (2ikn) e-2ikn(log2n) + O(x-M)
10g2 k"O 10g2

01 )

(0)

(29)-k n[(1-2 ) - 1J

T
n

valid for small a. Thus one first approximates Sn by :
-kL (e-n2 -I)

k;,O

Sn

Examples of additive valuations have been given
when discussing statistics on the number of nodes and
external path length. The algebraic paradigm is summa-
rized by equations (19), (20) ; results appear as sums
of which (22) is typical. Using thus path length as an
illustration, the problem is to approximate sums like

To determine the asymptotic behaviour of (31) for
large values of x, following [Kn 73J, one computes the
Mellin transform of F

i-e as the product of the Mellin transform of the fun-
damental function and of a Dirichlet series related to
the amplitudes and phases of the harmonics. As is known
the singularities of F*(s) -which are easy to determine
, using the factor form (33)- are related to the terms in
the asymptotic behaviour of F(x) at 0 and at 00 : a com-
bination of the Mellin inversion theorem with Cauchy's
residue theorem shows that

an

F* (s) =100

F (x) xs- l dx

which in this case factorizes as

(32)

(3)

4 - APPLICATIONS

We have made, an attempt at summarizing the main
techniques that can be used to analyze a general parti-
tionning process of computer science. We now conclude
by informally mentionning some typical applications.

The first application concerns the stack protocol
for resolving collisions in networks sharing a single
communication channel :

Theorem 1 [FFH 82J : The time necessary to resolve n
collisions in an open stack protocol network satisfies

= An + n4>(n) +
logn

where 4> is a fluctuating function of small arrplitude
and mean value O.

+ remainder of smaller order (34)

where the summation is extended to poles of F (s) in a
stripe. Equation (34) is based on the inversion theorem
for the Mellin transform

The exponential generating function of the an
satisfies a functional equation of the form

(6)

f
c+ioo

I *-sF(x) = -.- F (s) x ' ds21n
c-ioo

(35)
where A is the Poisson anival rate on the channel. The
interest of this non-local difference equation is the
nOIl'commutative character of its iteration group.

Philippe was using saddle points, Mellin transform, and making precise
characterization of periodicities, in 1982, more than 10 years before the
first Analysis of Algorithms meeting.
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Poissonization, depoissonization, asymptotics
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Analysis of Periodicities

The precise analysis of trie parameters demands careful handling of
fluctuations. E.g., the expected size (number of nodes) in a trie built over
uniform binary sequences is

n

log 2
(1 + ε(lg n)) + o(n),

where ε(x) is again a fluctuating function with amplitude less than 10−5.
Criticisms

Fluctuations :

–1.5e–06

–1e–06

–5e–07

0

5e–07

1e–06

1.5e–06

200 400 600 800 1000 1200 1400 1600 1800 2000
n

A complicated math exercise. An isolated
problem.

An expected outcome ( ): by easy
probabilistic argument.

A useless answer with fluctuations!

With Moore’s law, anyhow, etc.
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Analysis of Periodicities

In the three decades since the early 1982 paper, Philippe became a master
of the analysis of generating functions, and he went on to characterize
many trie parameters under more complicated probabilistic assumptions.

We briefly outline the way that the analysis changes, depending on the
branching probabilities p1, p2, . . . , pm related to the m letters in the
alphabet (e.g., m = 2 in the binary case)
When the trie is built over uniform binary sequences, the oscillating term
arises from the appearance of complex poles, for instance, at

zk = −1 +
2ikπ

log 2
, k ∈ Z.
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Non-Uniform Analysis

Oscillations also arise in the asymptotic growth of parameters of tries built
over non-uniform tries (i.e., biased probability model).

E.g., the expected size of a trie with branching probabilities p, q such that
log p
log q ∈ Q is

∼ n

H
(1 + ε(ln n)),

where ε is oscillating with small amplitude, and

H = p log (1/p) + q log (1/q)

is the entropy of the source that generates the strings.

When log p
log q /∈ Q, the expected size is ∼ n/H, with no oscillations in the

leading term.
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“On the Performance Evaluation of Extendible Hashing
and Trie Searching” (1983)

In b-tries, there are ≤ b strings per leaf (rather than one string per leaf).

The probability that a b-trie on n strings has height ≤ h is

exp

(
−2b u(n)2−bδ

(b + 1)!

)
(1 + O((log n)b+1/n1/b)),

where u(n) is the fractional part of (1 + 1/b) log2 n, and
δ = h − b(1 + 1/b) log2 nc, and h is in a central region around
(1 + 1/b) log2 n.

The average height is Hn = (1 + 1/b) log2 n + P((1 + 1/b) log2 n) + o(1)
where P is periodic.

The average size is Sn = Q((1 + 1/b) log2 n)n1+1/b(1 + O(1/(log n)b−1)),
where Q is periodic.
Clément and Ward (CNRS / Purdue) The Digital Tree Process December 16, 2011 21 / 26



Timeline: Asymptotic Analysis of Tries [adapted, PF 2010]

I 1965, De Bruijn, Knuth analyze tries built over uniform strings,
p = q = 1/2; oscillations exhibited

I 1973: Knuth (TAOCP, vol. 2) discusses biased case

I 1982: PF makes connections among several types of related analysis;
towards systematic treatments

I 1986: Fayolle, PF, Hofri study periodicity criterion, see also
Schachinger [2000], and Jacquet, Szpankowski, Tang [2001]

I 1990-2000: Convergence to asymptotic regime often wrongly assumed
to be fast. Caveats by Schachinger (2000).

I 2010: PF, Roux, Vallée, convergence to asymptotic regime is very
slow and depends on fine arithmetic properties of probabilistic model.
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Expected Size of Trie: m-ary Case

I If
log pj
log pk

are rational for all 1 ≤ j , k ≤ m, expected size has first-order

periodicities: Sn = n
H + nφ(log n) + O(n1−A), for A > 0, where

H =
∑

pj log (1/pj) is the entropy of the source.

I If at least one
log pj
log pk

is irrational, then expected size is:

Sn = n
H + O(n exp(− θ

√
log n)), for θ > 1. “This is better than

n/(log n)a, any a; much worse than n1−ε, any ε.” (“no oscillation,
but poor error term”)

I “For remaining ‘Liouvillean sources’ (rare), error term can come
arbitrarily close to o(n).”

Of course, the set
{

(p1, . . . , pm) | at least one of
log pj
log pk

is irrational
}

has

measure 1 in the m-ary space of all m-tuples. So this is actually the
general situation.
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Singularity Analysis

The geometry of the poles

1

1− ps
1 − · · · − ps

m

plays a central role in asymptotic analysis. See especially Digital Trees and
Memoryless Sources: from Arithmetics to Analysis, PF, M. Roux,
B. Vallée, 2010.

3. Inverse Mellin analysis

Make use of integration
contour that avoids poles

Estimate global contribs: 
pole-free region matters

Poles are well-separated

19Friday, June 25, 2010

The importance of the
geometry during inverse
Mellin analysis. Need in-
tegration path avoiding
poles and estimates of
global contributions.
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Verification with Data

Philip loved to check theoretical, asymptotic results using empirical
sources or simulations. E.g., The Analysis of Hybrid Tree Structures by
J. Clément, P. Flajolet, B. Vallée [SODA, 1998]

Moby Dick data. The evolution of insertion costs [left: array-trie, middle: list-trie, right: bst-trie], or 
equivalently negative search costs, shows an unclear tendency to increase as the number of data items n increases, 
and there is a fairly large variability of numerical data, 

The presentation obtained by plotting against logn the costs averaged over successive batches of 10 insertions 
exhibits more clearly the logarithmic trends, 
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and leads to empirical formula for the search costs in array-tries, list-tries, and bst-tries: 

E,[P] = 0.8logn, E,[R*] RS 3.0logn, E,[R] M l.Ologn. 

Finally, the evolution of path length divided by n log n, as insertions proceeds [bottom: standard trie, middle: 
bst-tries, top: list-tries], provides another view of the data. Here, the curves go by pairs corresponding to the two 
halves of the corpus. 

^.....~...~~_ ___- 
.- .-_... __ . . . . . . . 

_.-.... - 

Figure 3: A display of the evolution of search costs and path lengths as a function of the number of strings 
inserted in standard and hybrid trie structures. 
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Philippe Flajolet

Philippe, you are greatly missed.

Your friendship, guidance, and leadership will never be forgotten.

Combinatorics, Probability and Computing (2011) 20, 647–649. c© Cambridge University Press 2011
doi:10.1017/S0963548311000320

P H I L I P P E F L A J O L E T
1 December 1948 – 22 March 2011

Philippe Flajolet at the Institut Henri Poincaré in October 2010

Philippe Flajolet, mathematician and computer scientist extraordinaire, the father of

analytic combinatorics, suddenly passed away on 22 March 2011, at the prime of his

career. He is celebrated for opening new lines of research in the analysis of algorithms,

developing powerful new methods, and solving difficult open problems. His research

contributions will have an impact for generations, and his approach to research, based on

curiosity, discriminating taste, broad knowledge and interests, intellectual integrity, and

a genuine sense of camaraderie, will serve as an inspiration to those who knew him, for

years to come.

The common theme of Philippe’s extensive and far-reaching body of work is the

scientific approach to the study of algorithms, including the development of the requisite

mathematical and computational tools. During his forty years of research he contributed

nearly 200 publications, including many fundamental contributions and representing

uncommon breadth and depth. He is best known for his fundamental advances in

mathematical methods for the analysis of algorithms, and his research also opened new
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