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Analysis of Algorithms
Pioneering research by Knuth put the study of the performance of

computer programs on a scientific basis.

Challenge: Keep pace with explosive growth of new algorithms
a full employment theorem for algorithm analysts

“As soon as an Analytic Engine exists, it will necessarily guide the future course of the 
science.  Whenever any result is sought by its aid, the question will arise - By what course of 
calculation can these results be arrived at by the machine  in the shortest time?” 

Charles Babbage

how many times do I have 
to turn the crank?



Analysis of Algorithms
Pioneering research by Knuth put the study of the performance of

computer programs on a scientific basis.

Challenge: Keep pace with explosive growth of new algorithms
a full employment theorem for algorithm analysts AND STILL VALID

“As soon as an Analytic Engine exists, it will necessarily guide the future course of the 
science.  Whenever any result is sought by its aid, the question will arise - By what course of 
calculation can these results be arrived at by the machine  in the shortest time?” 

Charles Babbage

how long will my cellphone’s 
battery last?



Genesis of “Analytic Combinatorics” (early 1980s)

Optimism and opportunity

Knuth volumes 1-3

Search for generality

Algorithms for the masses

Teaching and research in AofA

TeX

Main idea: 

      Teach the basics so CS students can get started on AofA.
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Analysis of algorithms: classic example I
A binary tree is a node connected to two binary trees.

How many binary trees with N nodes?

Challenge: Efficiently teach basic math skills behind such derivations.

Develop a
recurrence relation.

Multiply both sides
by zN and sum 
to get an equation

that we can solve
algebraically

and expand to
get coefficients

that we can 
approximate.

Then introduce a
generating function.

Quadratic equation

Stirling’s approximation

Binomial theorem
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Analysis of algorithms: classic example II
A binary search tree is a binary tree with keys in order in inorder.

Path length of a BST built from N random distinct keys?

Note: Analyzing a property of permutations, not counting trees.

Develop a
recurrence relation.

Multiply both sides
by zN and sum 
to get an equation

that we can solve

and expand to
get coefficients

that we can 
approximate.

Then introduce a
generating function.

Euler-MacLaurin summation
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Thirty years in the making

1995

2009

~1992 decision to split into two 
books (need to do the math!)

~1980 decision to write an AofA book

1986 Princeton course

INRIA tech reports



Analysis of Algorithms

Recurrences
1st order, nonlinear, higher order, divide-and conquer

Generating Functions
OGFs, EGFs, solving recurrences, CGFs, symbolic method, 
Lagrange inversion, PGFs, BGFs, special functions.

Asymptotics
expansions, Euler-Maclaurin summation, bivariate, 
Laplace method, normal approximations, Poisson 
approximations, GF asymptotics

Trees
forests, BSTs, Catalan trees, path length, height, 
unordered, labelled, 2-3

Permutations
properties, representations, enumerations, inversions, 
cycles, extremal parameters

Strings and Tries
bitstrings, REs, FSAs, KMP algorithm, context-free 
grammars, tries.

Words and Maps
hashing, birthday paradox, coupon collector, occupancy, 
maps, applications

Goal: Teach the mathematical concepts needed to study

the performance of computer programs.

Teaches the basics 
for CS students to 
get started on AofA.

Done?

✓



An emerging idea (PF, 1980s)
In principle, classical methods can provide

• full details

• full and accurate asymptotic estimates

In practice, it is often possible to 

• generalize specialized derivations

• skip details and move directly to accurate asymptotics

Ultimate (unattainable) goal: Automatic analysis of algorithms

Ex. 

Algorithm
Asymptotic
estimate of 

running time

input model

N !oats

BST
construction

~c N ln N 
seconds



Analytic Combinatorics: classic example
A binary tree is a node connected to two binary trees.

How many binary trees with N nodes?

Challenge: Develop an effective calculus for such derivations.

Develop a
combinatorial 
construction,

that we can
manipulate algebraically

and treat as a function
in the complex plane 
directly approximate
via singularity analysis

which directly maps to
a GF equation )(a) = �+ a)(a)�
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< B >= ε + < B > × •× < B >

Note: Construction for BSTs is not so simple.



Analytic Combinatorics
A calculus of discrete structures

Symbolic Methods
Combinatorial Structures and OGFS
Labelled Structures and EGFs
Parameters and MGFs

Complex Asymptotics
Rational and Meromorphic Asymptotics
Singularity Analysis
Saddle-Point Asymptotics

Random Structures
Multivariate Asymptotics
Limit Laws



The Symbolic Method
Constructions of combinatorial classes can be 

automatically translated to GF definitions.

Unlabelled classes lead to OGFs

Ex. Cartesian product
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Construction for 
ordered pairs,

and an ordinary 
generating function (OGF).

OGF of Cartesian product 
is product of OGFs by 
distributive law

a corresponding
counting sequence,

< A >=< B > × < C >

α = (β, γ) β ∈< B > γ ∈< C >class of objects where and



The Symbolic method

< A >=< B > + < C >

< A >=< B > × < C >

< A >= SEQ(< B >)

< A >= PSET(< B >)

< A >= MSET(< B >)

< A >= CYC(< B >)

ConstructionConstructionConstruction OGF

Union

Product

Sequence

Powerset

Multiset

Cycle
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[ several others ]

Constructions of combinatorial classes can be 

automatically translated to GF definitions.

Unlabelled classes lead to OGFs



The Symbolic Method

Binary words

a binary word 

construction for class of all binary words

automatic derivation of OGF

Elementary OGF examples (unlabelled objects).

0 1 1 0 1 1 0 1 1 1 1 1 1

A(a) = a
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< W >= SEQ(< Z > + < Z >)

atomic class

< Z >= � | �

Nonnegative Integers

an integer (in unary)

1 1 1 1 1 1 1 1 1 1 1 1 1 1

construction for class of all nonnegative integers

automatic derivation of OGF

atomic class
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The Symbolic Method

Trees

a general tree 

construction for class of all ge

automatic derivation of OGF

Representative OGF examples (unlabelled objects).

Binary trees

a binary tree

construction for class of all binary trees

automatic derivation of OGF

atomic class

< B >= ε + < B > × < Z > × < B >
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The Symbolic Method
Derivations are easy to generalize.

Unary-Binary Trees

a unary-binary tree

construction for class of all unary-binary trees

automatic derivation of OGF

atomic class

< Z >:= •

<(a) =
�− a−

√
(�+ a)(�− �a)
�a

<(a) = a(�+<(a) +<(a)�)

< U >=< Z > (< � > + < U > + < U > × < U >)



The Symbolic method

< A >=< B > + < C >

< A >=< B > ! < C >

< A >= SEQk(< B >)

< A >= SEQ(< B >)

< A >= SETk(< B >)

< A >= SET(< B >)

< A >= CYCk(< B >)

< A >= CYC(< B >)

ConstructionConstructionConstruction EGF

Union

Product

Sequence

size k

Sequence
any size

Set
size k

Set
any size

Cycle

size k

Cycle
any size

((a) = )(a) + *(a)

((a) = )(a) · *(a)

((a) =
�

�− )(a)

[ several others ]

Constructions of combinatorial classes can be 

automatically translated to GF definitions.

Labelled classes lead to EGFs
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The Symbolic Method

Surjections

< R >= SEQ(SET≥�(< Z >))

Derangements

9(a) =
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=

�
� � (La � �)

=
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1 2 3 4 5 6 7 8

2 1 2 3 5 3 4 3

1 2 3 4 5

{2} {1, 3} {4, 6, 8} {7} {5}

a surjection (onto mapping)

alternate (preimage) representation

construction for class of all surjections
onto any initial segment of the integers

automatic derivation of EGF

1 2 3 4 5 6 7 8

3 4 8 2 6 7 5 1

a derangement 

alternate (cycle) representation

construction for class of all derangements

automatic derivation of EGF

< D >= SET(CYC>�(< Z >))
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Representative EGF examples (labelled objects).

{1  3  8}  {2  4}  {5  6  7}



Recovering coefficients from GFs
is sometimes easy, but often challenging

class GF expansion

binary words

trees binomial

BSTs elementary
convolution

permutations with 
all cycle lengths > 3

triple
convolution

unary-binary trees not
elementary

examples (increasing order of difficulty)
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Assigning complex values to the variable z in a GF gives a

method of analysis to estimate the coefficients.

The singularities of the function determine the method.

Complexification

singularity type method of analysis

meromorphic
(just poles)

Cauchy
(elementary)

fractional powers
logarithmic

Cauchy
(Flajolet-Odlyzko)

none
(entire function) saddle point

First Principle. Exponential growth of a function’s coefficients

is determined  by the location of its singularities.

Second Principle. Subexponential factor in a function’s coefficients

is determined  by the nature of its singularities.



Flajolet-Odlyzko method provides detailed 

asymptotic estimates of coefficients for a broad function scale.

Singularity Analysis

C H
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Start with Cauchy 
coefficient formula

and evaluate, leading to 
integral representation 
of the Gamma function

deform to 
Hankel countour

Ex. Fractional powers

Approach extends to logarithmic factors.

Also effective for implicitly defined GFs.



Singularity Analysis
leads to general transfer theorems that immediately provide 

coefficient asymptotics.

[a5](�− a)α ∼ �

Γ(α)5α+�

[a5](�− a)α ln
�

�− a
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Γ(α)5α+� ln5

[a5]
�

(�− a/ρ)
= ρ5

Transfer theorems are effective even for approximations near singularities.



Complexification examples

class GF
singularitysingularity coeffiecient

asymptoticsclass GF type at
coeffiecient
asymptotics

binary words pole

derangements pole

surjections poles

trees square
root

BSTs logarithmic
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“If you can specify it, you can analyze it”

GF asymptoticsspeci"cation Symbolic
Method

Transfer
Theorems

permutations with all cycle length > 3

unary-binary trees

< D(�) >= SET(CYC>�(< Z >)) +(�)(a) =
La+a�/�+a�/�

(�− a)
+(�)
5 ∼ L−�−�/�−�/�

Representative examples

< U >=< z > (< � > + < U > + < U > × < U >)
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AC Schemas
Symbolic Method

First Law

Second Law

Singularity Analysis

AC Schemas

Saddle Point

Limit Laws

The symbolic method and singularity analysis admit

universal laws of sweeping generality.

Develop a system of 
combinatorial 
constructions,

that we can
manipulate 
algebraically

that is amenable to
singularity analysis

which directly maps 
to a system of 
GF equations

Groebner basis elimination

Drmota-Lalley-Woods theorem

.�(a) = -�(.�(a),.�(a), . . . ,.[(a))

.�(a) = -�(.�(a),.�(a), . . . ,.[(a))

. . .

.[(a) = -[(.�(a),.�(a), . . . ,.[(a))

to get a single
complex function

Like a context-free language
or data-type definition

(irreducible and aperiodic)

Ex. Context-free specifications
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√
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.�(a) = -(.�(a),.�(a), . . . ,.[(a))

A universal law for context-free specifications.5 ∼ H
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< G� > = 67�(< G� >, < G� >, . . . , < Gt >)

< G� > = 67�(< G� >, < G� >, . . . , < Gt >)

. . .

< Gt > = 67[(< G� >, < G� >, . . . , < Gt >)

Symbolic method leads
to a system of implicit

function definitions



Bumps in the road

Constructions may be difficult to discover.

Implicit functions may be difficult to analyze.

Transfer theorems have technical conditions that need to be checked.

Multiple dominant singularities lead to oscillations.

Many GFs have no singularities, need saddle-point asymptotics.

Singularity structure may be complicated, need Mellin asymptotics.

AofA often requires studying properties, need MGFs and limit laws.

Many of these have been effectively addressed and research is ongoing.

Ex: BSTs

Ex: Counting balanced BSTs

Ex: Involutions

Ex: Tries, Divide-and-conquer algorithms

Ex: Arithmetic algorithms

Ex: PF and RS “formula in common”

Ex: Planar graphs



The Logical Structure of Analytic Combinatorics

Symbolic Methods
Generating functions 

(OGFs, EGFs, MGFs)

Complex Asymptotics

Singularity Analysis
Saddle Point

Random Structures
Multivariate Asymptotics
Singularity Perturbation

Exact
Counting

Asymptotic 
Counting

Large
Deviations

Moments
of Parameters

Limit Laws

Combinatorial
Structures



If you can specify it, you can analyze it

Applications of analytic combinatorics

• patterns in random strings

• polynomials over finite fields

• hashing

• digital tree and tries

• geometric search

• combinatorial chemistry

• arithmetic algorithms        

• planar maps and graphs

• probabilistic stream algorithms

• master theorem for divide-and-conquer

• bioinformatics

• statistical physics

       . . .

A calculus for the 
study of discrete 
structures.

✓



A brilliant mathematician and truly a computer scientist
PF, SODA 2007

 Knuth proved the point that precise analysis is both feasible and fruitful, but his attention to detail 
was viewed as excessive by many.

Theoretical computer science reverted to worst-case analysis based on tools from computational 
complexity. In all too many cases, this has resulted in an excess of its own, with works culminating 
in teratological constrcutions both devoid of mathematical simplicity and elegance and bearing 
little relevance to the practice of computing.

At the same time, average-case and probabilistic analyses have proven to have spectacular impact 
on the practice of computing.

Many fundamental algorithms and data structures can be precisely analyzed and tuned for 
optimal performance. The corresponding calculus, largely motivated by considerations of 
algorithmic efficiency, is also of some mathematical interest per se.
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From Analysis of Algorithms to Analytic Combinatorics



Thank you, Philippe !

Working with you was a pleasure, an honor, and a privilege.



http://algo.inria.fr/pfac/PFAC/PFAC.html


