Philippe Flajolet and the Register function

Helmut Prodinger

Stellenbosch

December 15, 2011



Philippe Flajolet, J.-C. Raoult, and J. Vuillemin. The number of
registers required to evaluate arithmetic expressions. Theoretical
Computer Science, 9:99-125, 1979.



Philippe Flajolet, J.-C. Raoult, and J. Vuillemin. The number of
registers required to evaluate arithmetic expressions. Theoretical
Computer Science, 9:99-125, 1979.

journal version; there is an earlier 1977 version



Introductory remarks:



Introductory remarks:

The master of the Mellin transform did not use it here!

He often told the story that he learnt it from Rainer Kemp, who
used Knuth's "Gamma-function method”. (A special case of the
method.)

Here, everything is based on an elementary result about the
summatory function of the sum-of-digits function, due to Delange.



reg(0J) = 0, and if tree t has subtrees t; and t», then

max{reg(t1),reg(t2)} if reg(t1) # reg(t2),
1+ reg(t1) otherwise
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j<p j<p
In terms of generating functions:

Ro(2) = zR2_1(2) +22Ry(2) > Ri(z
j<p



Amazingly, this can be solved explicitly.
After some manipulations, a recursion pops up that is reminiscent
of Chebyshev polynomials.



First, a trigonometric substitution was used, but eventually the one
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Then

Rp(Z) = 1 _ u2p+l



Reading off coefficients, the average number of registers requires
to evaluate

; va(k) Kn +21n— k) - 2<n2—nk> ! <" _21"_ k>]

with v»(k) being the number of trailing zeroes in the binary
representation of k.



The average number of registers to evaluate a binary tree with n
nodes is asymptotically given by

log, n 4+ D(log, n) + o(1)

with .
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with yx = 2%% Perhaps Flajolet’s first periodic oscillation?
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a) The early Flajolet. (aka F-Raoult-Vuillemin)
Double summation:

> wali) = k = Sa(k)

i<k

Sy(k) is the number of ones in the binary expansion of k.
It is known:

|
Z So(m) = . og2 T nF(log, n).

m<n

This was shown by Delange and apparently mentioned to Flajolet
directly.

The periodic function F(t) is fully explicit in terms of Fourier
coefficients.



A negative side effect of this is that the second difference of
binomial coefficients became a fourth difference. No problem:
approximations are available (Hermite polynomials).

Z [k |02g2 k + kF(log, k)} H4(\fﬁ>e—k2/n

k>1




Z [k |02g2 k + kF(log, k)} H4(;B>e—k2/n

k>1

This is doable (Riemann sums, controlling the error) but a bit dry.
But: completely elementary!



The mergesort recurrence

is solved by

Since Flajolet developed a calculus how to solve such recursions
(Golin’s talk), he got as a bonus a quick derivation of Delange's
result.



Remark. To solve explicitly for R, is somewhat crucial. Duchon et
al. suggested a generalisation where no explicit formula is available,
and Drmota and myself could only identify the leading log, n term!



Remark. To solve explicitly for R, is somewhat crucial. Duchon et
al. suggested a generalisation where no explicit formula is available,
and Drmota and myself could only identify the leading log, n term!
Delange's paper was extended and generalized into many different
directions by many people.



b)
After Flajolet learnt about the Mellin transform, he attacked a sum

like .
> va(k)Ha(kt)e <t
k>1
(t =1/4/n) directly.
This goes well, since v»(2k + 1) = 0 and v»(2k) = 1 + va(k) and

va(k) _ ¢(s)

ks 251
k>1

This appears already in his thése d'etat.
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generating functions, thanks to A. Odlyzko, he would consider
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generating functions, thanks to A. Odlyzko, he would consider
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E(Z):ZPRP(Z):ZP u 1_ g2t

p>1 p>1

and study it around the singularity v =1 with ...

The Mellin transform!

But now on the level of the generating function itself, not the
coefficients.



| studied last week his paper with Bruce Richmond, and he uses
the strategy “Mellin, followed by singularity analysis” also in the
context of b-digital search trees.
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Z pet2P(142)

p=>1,A2>0

This is a harmonic sum!

,t2p+1



A local expansion around t ~ 0 is thus found. It translates:

or

VvV1—4z ~ 2t
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This can be translated into an asymptotic expansion of the
coefficients.



With very little extra effort this can be used to treat unary-binary
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With very little extra effort this can be used to treat unary-binary
trees:

(paper by Flajolet/Prodinger)
Unary node: register function does not increase.
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marks internal nodes and leaves.
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Options for size:



Options for size:
Count both, leaves and internal nodes



Options for size:
Count both, leaves and internal nodes
Count only internal nodes



Not much changes in the result:

logy n + D(log, n — constant) — constant



A NOTE ON GRAY CODE AND ODD-EVEN MERGE
P. FLAJOLET AND LYLE RAMSHAW

“Note” has 17 pages!

Gray code: Pattern last digit: 0110 0110 0110 ...
penultimate: 00111100 00111100 00111100 ...

and so on.



A NOTE ON GRAY CODE AND ODD-EVEN MERGE
P. FLAJOLET AND LYLE RAMSHAW

“Note” has 17 pages!

Gray code: Pattern last digit: 0110 0110 0110 ...
penultimate: 00111100 00111100 00111100 ...

and so on.
Formula:

_ n 3 n 1

) =+~ |3k2 T2



Delange type approach works, since

no 3| _ M e 3]
P= I I R TR i



The quantity of interest (Sedgewick, odd-even merge):
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i>1 ( n)
with 3(i) being the number of ones in the GRAY code
representation of /.




The quantity of interest (Sedgewick, odd-even merge):

2,” -3 2.n 3 2n' _ 2.n
1 + (n + 1) ZB(/) (n+/+2) (n+/+1)2:_ (n—i—/) (n—l—/—l) ,
i>1 ( n)
with 3(i) being the number of ones in the GRAY code
representation of /.

All 3 approches (elementary, Mellin, Mellin+singularity analysis)
are available in this instance as well.




In a paper with coauthors Grabner, Kirschenhofer, Prodinger,
Tichy, he used the Mellin-Perron technique to deal with digital
sums.

More exotic things could also be handled with this approach:
Stein’s suggestion to interpret a binary expansion as a ternary
expansion, representations of integers of sums of 3 squares, etc.



