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Fig. 1. Three representations of maps. The first two are identical as maps, while the third
one is not, although the three underlying planar graphs are identical.

sented in a largely self-contained way (see, e.g., [29, 43] for more). It is intended as a
preparation of the technical treatment in the rest of the article. The two basic ingre-
dients introduced concurrently here are: (i) exact power representations for map
counts (via the Lagrangean framework) that are to be later exploited by the saddle-
point method in Sections 3 and 4; (ii) singularity analysis, which provides direct
asymptotic estimates, and is extended in Sections 5 and 6 as well as Appendix A.
A map is an embedding of a connected planar graph in the sphere, considered
upto orientation preserving homeomorphisms. By construction, the complement of
the vertices and edges of a map in the sphere is a union of simply connected faces.
In general, loops and multiple edges are allowed. A map is completely character-
ized by its underlying graph together with a cyclical ordering of edges around each
vertex. Following Tutte [48, 49], we consider rooted maps, that is, maps with an ori-
ented edge called the root—this simplifies the analysis without essentially affecting
statistical properties (see [42] and Section 6). To represent maps on the plane, a
point of the sphere must be placed at infinity; by convention, we always=choose it so
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Fig. 2. The decomposition of a map into its nonseparable core and the pending submaps.

dom (connected) maps. The paradigm that we illustrate by a particular example is
in fact, of considerable generality as can be seen from Section 6.

2.1. The Physics of Maps

From earlier works [7, 27, 43], it is known that a random map of /, has with
high probability a core that is either “very small” (roughly of size k = O(1)) or
“very large” (being ©(n)). The probability distribution Pr(X,, = k) thus has two
distinct modes. The small region (say k = o(n)) has been well-quantified by previous
authors, see [7, 27, 43]: a fraction p, = % of the probability mass is concentrated
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Question
What is the size X, of the largest 2-connected component in a
random map with n edges?
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Similar result for 3-connected components in 2-connected maps,
4-connected components in 3-connected triangulations. . .
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Proof Estimating coefficients of high powers of gen. functions

[z"]G(z)  j~pn

using Cauchy integrals
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Philippe's dictum
Strive to find limit distributions

Question
Which is the limit distribution for the size of the largest
2-connected component in a random map?



Core of a map: 2-connected component containing the root

Two regimes

» Core is small — Discrete law

» Core is large — Continuous law
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Fig. 3. Left: The standard Airy distribution. Right: Observed frequencies of core-sizes
k € [20;1000] in 50,000 random maps of size 2,000, showing the bimodal character of the
distribution.

Major properties of the function s¢(x) (including the equivalence between the two
definitions of (2)) are gathered in Appendix 7. The Airy distribution? is a probability
distribution, i.e., fR si(x)dx = 1, and an unusual feature is the fact that the tails are
extremely asymmetric:

sA(x) Rty
A plot of the map-Airy distribution is presented in Figure 3 (left).

We shall find that the size of the core (when conditioned upon the large region)
and the size of the largest 2-connected component of a random map are described
asymptotically by an Airy law of this type. Figure 3 (right) exemplifies this with
simulation results of core-size: the “bimodal” character of the combinatorial distri-
bution is clearly visible and the convergence of simulation data to the limit Airy
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Composition scheme
M(z)=> M.z"  C(z)=)_ Gz*
M(z) = C(2(1 + M(2))?) = C(H(2))  H(z) = (1 + M(2))?
M(z) = CeH(2)¥

The number of maps of size n with core-size k is

[2"H(2)"



M(z) = Z M,z" C(z) = Z Coz

Singularities
pom =1/12  pc=4/27

Singular expansion

M(z) = Mo + Ma(1 — 122) + M5(1 — 122)%2 4 ...



M(z) = Z M,z" C(z) = Z Ciz*

Singularities
om=1/12  pc =427

Singular expansion

M(z) = Mo + Ma(1 — 122) + M5(1 — 122)%2 4 ...

Critical composition scheme

H(pH) = pm

Coalescence of singularities — non-Gaussian limit law



Left tail Centre Right Tail
k: [en, (a0 — €)n] aon [(ao + €)n, (1 — €)n]
Saddle points: r<7 =1 T>17
Method: simple saddle point double saddle point simple saddle point
(Section 2.1) (Section 2.2) (Section 2.1)
Type: /e_tht /te_tadt /e_tzdt
™ 2T T
Angle: +— +— +—
nele 2 3 2
Error: n~1/? n~l/3te n~1/?
Central region “Wide” region
k: [aon + an®?, aon + bn?/?) [en, (1 —€)n]
Saddle points: =T
Method: nearby saddle points coalescing saddle points
(Section 2.3) (Section 3)
Type: /(a: —t)e Zt7t3/3dt /(x —t)e wt*ta/sdt
21 .
Angle: :i:? — cubic curve
Error: n /3% n”/3

Fig. 5. Top: A broad classification of the methods involved in the classification of tails and
center of the core-size distribution. Bottom: Refinements of the saddle-point method appli-
cable to the critical region of the law of core-size.

ensuring a complete local capture of the contribution as well as validity of the
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Theorem
For a critical composition scheme

3 3
M=CoH of type 5°5

the distribution of core-size X,, has three asymptotic regimes



Theorem
For a critical composition scheme

3 3
M=CoH of type 5°5

the distribution of core-size X,, has three asymptotic regimes

1. Left region k = an, a < ag
P(X, = k) ~ ck™3/2
2. Central region
P(X, = agn + xn*3) ~ n72/3f(x) scaled Airy law
3. Right region k = an, a > «ag
P(X, = k) = O(A¥), A< 1

Corollary
The size of the largest component in many varieties of planar maps
is asymptotically Airy distributed around agn



TABLE 4 Parameters of the composition schemas of Table 3

Maps Cores a, c Pe
General, /L, bridge/loopless, i, 2/3 3/2 2/3
Loopless, ., simple, ., 2/3 3434 2/3
General, J, nonseparable, /i, 1/3 3/4%3 1/3
Nonsep., ., nonsep. simple, /s 4/5 15°3/36 4/5
Nonsep., ./, 3-connected, .l 1/3 343 /4 16/81
Bipartite, %, bip. simple, %, 5/9 383/20 5/9
Bipartite, %, bip. bridgeless, %, 3/5 (15/2)%3/18 3/5
Bipartite, %, bip. nonsep., %, 5/13 (13/6)*7-3/10 5/13
Bip. nonsep., %, bip. nonsep. simple, % 5/17 (17/3)*3-3/20 5/17
Singular tri., 7, triangulations, 7, 12 (3/2)13 12
Triangulations, 7, irreducible tri., 75 12 6*°/3 729/2048

last schema involves a slight adaptation but clearly resorts to a similar analysis.) In
addition, as shown by Table 2, all families of Table 1 obey the Lagrangean frame-
work, Eq. (4), and are thus amenable to the saddle-point methods of Sections 3 and
4 as well.

Theorem 6 (Airy law for varieties of maps). Consider any schema of Table 4 with
parameters «, ¢, and p,. The probability Pr(X, = k) that a map of size n has a
core of size k admits a local limit law of the map-Airy type with centering constant
ay, scaling parameter ¢, and weight p,: uniformly for x in a bounded interval

o cAl(ex) o



TABLE 1 A selection of classical families together with their associated generating func-
tions, M(z) = }_,.; M,z", where M, is the number of maps in ./ that have size n

Maps, size n > 1

Generating function (first terms)

A, general maps, n edges

AL, bridgeless maps, n edges

AL, loopless maps, n edges

Ji; simple maps, n edges

i, nonseparable maps, n edges

Jlls nonseparable simple maps, n edges
A 3-connected maps, n + 1 edges

%, bipartite maps, n edges

%, bip. simple maps, n edges

%, bip. bridgeless maps, n edges

%, bip. nonseparable maps, n edges

s bip. nonsepar. simple maps, n edges
7, singular triangulations, n + 2 vert

9, triangulations, n + 3 vert
T irreducible triangulations, n + 3 vert

M, (z) = 2z + 92% + 542° + 378z* + 29162°
M,(z) = z +32% + 132> + 682" +3992°
M,(z) = z +32% + 132> + 68z* +3992°
My(z) = z + 22> + 62° + 2324 + 1032°
My(2) =2z 4 22 +22° + 62* +222° + 912°
My(z)=z+ 22 + 2 +62° +162° 4+ 7177
M(z) = 2° + 427 + 62° + 242° + 662"

B(2) = z+32% 4+ 122° + 562* + 2882°
B,)(z) = z+222+52° + 1524 + 527°
By(z) = 22 + 2° + 62 +162° + 712°
B(z)=z+4 2"+ 2 +22' +62° +192°
By(z) =z 4 z* +32° + 777 + 1528 4 632°

T\(z) = z + 42> + 242° 4+ 1762* + 14562°

T,(z) = z + 32> + 132> + 68z* + 3997°
Ty(z) = z + 22 4+ 32* + 122° + 522° 4 24177

6.1. Map-related Composition Schemas

We start with a few definitions of classes of maps that have proved to be of interest

in the combinatorial literature.

Families of Maps. A map is loopless if it does not contain any loop; bridgeless

if it does not contain any bridge (a bridge, or isthmus, is-an edge whese removal



TABLE 2 Generating functions, parameterizations and singular expansions for the families
of Table 1

J ) v 1/p Singular expansion (Z =1—z/p)
Ay 3(1+y) Lo 12 LSz 822 4 0(22)

Ay 3(1+ )" W 2z 3tz whzvo(z2)
iy LB DY) 8 227+ B2+ 0(2%)
M, (1+y) s z Loz 8704 0(27)

A5 R e = $-2z+ 35702
A = = 4 G- W2+ BT OZ)
%, 21+ y) 8 L Z 427 4 O(22)

o wi 2 -3z Bz 0(2)
% e T 2 & Bz + 8z L 02)
%, % e 1z o374 2 704 0(2)
Bs s Ko=) s 1374 WS 7324 0(2%)
7, 21 +y)? 0D z L-3z+ L7+ 027

7 (1+y) Y@ +y-1 e - ¥z4+ 28724 0(2%)
s R S B A e

In this table, M(z) = W(L(z)), where L(z) = z¢(L(z))

“universal” phenomenon by providing the parameterizations, dominant singularity
and singular expansion for the families of Table 1.



> Deep analysis
» Wide range of applicability



> Deep analysis
» Wide range of applicability

Giménez, N., Rué
The largest 2-connected (and 3-connected) component in
random planar graphs is Airy distributed

The largest 2-connected component has size 0.96n a.a.s.
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Abstract

This paper describes a systematic approach to the enumeration of ‘non-crossing’ geometric
configurations built on vertices of a convex n-gon in the plane. It relies on generating func-
tions, symbolic methods, singularity analysis, and singularity perturbation. Consequences are both
exact and asymptotic counting results for trees, forests, graphs, connected graphs, dissections,
and partitions. Limit laws of the Gaussian type are also established in this framework; they
concern a variety of parameters like number of leaves in trees, number of components or edges
in graphs, etc. © 1999 Elsevier Science B.V. All rights reserved
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Fig. 2. (a) A connected graph; (b) an arbitrary graph.

(i) The number of graphs of size n = 3 is expressible in terms of Schroder numbers,

n . \*13(2’172‘)73) n—2vA—v—2
Gr=2"¢, 1, = Y (_1)W3 272 (14)

0<v<(n/2)
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(a) (b)
Fig. 3. (a) A dissection; (b) a non-crossing partition.

There is an alternative way to expand the GF, not to be found in Comtet’s book
[7]. Set D=zy. Then y satisfies an equation similar to (24),

2 1-2
y:z+y— or z:y—y.
1-y 1-y

Thic eanation ic of the T aoranoce tune and 1t can he acnithiected to itnvercinn
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Fig. 1. (a) A tree; (b) a forest.

(iv) The GF of forests, the BGF of trees and leaves, and the BGF of forests and
components, are algebraic functions given by (10), (6) and (11).

Trees were first enumerated by Dulucq and Penaud [12], and their result is summa-
rized in part (i) of the theorem; the enumeration of forests ‘by GF in (10) below is



Classical subject: polygon triangulations, dissections, non-crossing
partitions. . .

Systematic analysis

» For all objects under consideration, asymptotic enumeration of
the form

» For all parameters X,, under consideration (number of edges,
number of components...) asymptotic normal law with

E(X,) ~ kn 02(Xn) ~ An
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Table 4
The constants appearing in the statement of Theorem 4

Class w Num. value

;
27 3
(T) Trees =l 6.75000 V3
a 27
(F) Forests : 8.22469 0.07465
5 V2
(C) Connected graphs 63 10.39230 % - %
1
(G) Graphs 6+4v2 11.65685 7V —140+99v2
I ave—=
(D) Dissections 3+ 2\/2 5.82842 4_1 —140 + 99v/2
(P) Partitions 4 4.00000 1

Note: ¢ denotes the root of the polynomial 4 — 32x — 8x2 + 5x that is near 0.121, and 0.07465 represents
the explicit algebraic number of degree 6 equal to /2, with  given in the text.

near the dominant singularity p being

f@) ~co+eav1—2z/p. (26)

Then singularity analysis [16] is used to achieve the transfer of (26) to-coefficients
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Table 5

The constants appearing in the statement of Theorem 5

Class, parameter K (mean) A (variance)
Trees, leaves é 0.444 ﬁ 0.115
9 243
8 13 15 192 5 47
Forests, components R e 0.176 — 4= 0.140
37 37 74 1369 2738 2738
1 3 1
Connected graphs, edges 3 + % 1.366 1 0.250
1 V2 1 V2
Graphs, ed -+ — 1.207 -+ — 0.426
raphs, edges 2 + 2 3 + 3
5 3 50 255
Graphs, components I-IV2 0.108 —+ — 0.095
717 2401 4802
2 2
Dissections, regions % 0.707 % 0.176
. 1 1
Partitions, blocks 3 0.500 3 0.125

Note: ¢ denotes the root near 0.121 of the polynomial 4 — 32z — 822 + 5z3.

Theorem 5. Consider the following parameters: number of leaves in trees, components
in forests, edges in connected graphs, components in graphs,-edges in graphs, regions
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I have read your interesting note on non-crossing
trees. I think I can solve the open problem you
mention on the number of leaves, thus confirming your
conjecture.

The analysis is based on specifications of
combinatorial objects. You can specify a non-crossing
tree as...
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Dear Dr. Noy,

I have read your interesting note on non-crossing
trees. I think I can solve the open problem you
mention on the number of leaves, thus confirming your
conjecture.
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A few weeks later

Dear Marc,

I am coming next month to Barcelona for a number
theory conference, maybe we could meet and discuss
about

Cheers,
Philippe
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