Pólya urns: THE analytic approach

BASILE MORCRETTE

UNIVERSITÉ PIERRE ET MARIE CURIE, PARIS INRIA ROCQUENCOURT AND LABORATOIRE D'INFORMATIQUE DE PARIS 6 UMR CNRS 7606

NICOLAS POUYANNE

Université de Versailles St Quentin Laboratoire de mathématiques de Versailles UMR CNRS 8100

Philippe Flajolet and Analytic Combinatorics Conference in the memory of Philippe Flajolet Paris-Jussieu December 15th 2011

Balanced Pólya urns

Replacement matrix $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ Entries are nonrandom integers

- Balance hypothesis:
- $\alpha + \beta = \gamma + \delta = s.$
- Tenability assumptions:
- $\gamma,\beta\geq 0;$
- if $\alpha \leq -1$, arithmetic conditions $\alpha | \gamma$ and $\alpha | a_0$; *idem* with δ .

Similarly, more than two colors...

Balanced Pólya urns

Question: what is the composition of the urn after n drawings?

More precisely, two main points of view

- Distribution of balls of different colors at time *n* when *n* is large (*slice* problem)
- After suitable normalization, limit distribution of the composition vector (*limit* problem)

Widely applicable model in physics, biology, medicine, theoretical computer science, *etc*. Simple, elegant and fascinating object in mathematics.

[Extensions to random coefficients or unbalanced replacement matrices.]

Methods

• Combinatorial enumeration [Jacob Bernoulli, Laplace, Pólya,... Mahmoud,...]

Probabilistic methods
[Bagchi&Pal, Gouet, Athreya&Karlin, Aldous&Flannery&Palacios, Jan-

son, 💟 (algebraic flavour)...]

• The approach by analytic combinatorics:

Philippe Flajolet

with co-authors Philippe Dumas, Joaquim Gabarró, Thierry Huillet, Basile Morcrette, Helmut Pekari, Vincent Puyhaubert

Books: Johnson&Kotz, Mahmoud

Coding by histories

Code the urn process by words $(W_n)_{n\geq 0}$ in the alphabet $\{b, w\}$.

Start with

$$W_{0} = b^{a_{0}}w^{b_{0}} = \underbrace{bbb\dots bwww\dots w}_{a_{0}}$$

If (say) the second ball is drawn,

get W_1 replacing the second letter (say b) by the word $b^{\alpha+1}w^{\beta}$:

$$W_1 = bb^{\alpha+1}w^{\beta}b\dots bwww\dots w.$$

And so on:

Black ball drawn \rightsquigarrow the corresponding letter b is replaced by $b^{\alpha+1}w^{\beta}$; White ball drawn \rightsquigarrow the corresponding letter w is replaced by $b^{\gamma}w^{\delta+1}$.

Histories: generating functions

An *history* of length n is a sequence (W_0, W_1, \ldots, W_n) of such words.

Notations:
$$H_n\begin{pmatrix}a_0&a\\b_0&b\end{pmatrix}$$
 is the number of histories of length n that lead from the initial composition $\begin{pmatrix}a_0\\b_0\end{pmatrix}$ to the final composition $\begin{pmatrix}a\\b\end{pmatrix}$.

The hero: the trivariate GF
$$H\left(x, y, z \middle| \begin{array}{c} a_0 \\ b_0 \end{array}\right) := \sum_{n, a, b \ge 0} H_n\left(\begin{array}{c} a_0 & a \\ b_0 & b \end{array}\right) x^a y^b \frac{z^n}{n!}.$$

Two key properties.

Histories: convolution property

The urn composition is essentially described by the two elementary processes starting respectively from one black ball only and one white ball only:

$$H\left(x, y, z \left| \begin{array}{c} a_{0} \\ b_{0} \end{array} \right) = H\left(x, y, z \left| \begin{array}{c} 1 \\ 0 \end{array} \right)^{a_{0}} H\left(x, y, z \left| \begin{array}{c} 0 \\ 1 \end{array} \right)^{b_{0}} \right)$$

Stochastic independence flavour, as in continuous time branching processes ... endless passionate discussions with PF and Brigitte Chauvin. Histories: differential system

The couple of functions
$$\left(H\left(x, y, z \middle| \begin{array}{c} 1 \\ 0 \end{array} \right), H\left(x, y, z \middle| \begin{array}{c} 0 \\ 1 \end{array} \right) \right)$$

is THE solution to the (monomial, homogeneous) ODS

$$\left\{ \begin{array}{l} f'(\pmb{z}) = f(\pmb{z})^{\alpha+1}g(\pmb{z})^{\beta} \\ g'(\pmb{z}) = f(\pmb{z})^{\gamma}g(\pmb{z})^{\delta+1} \end{array} \right.$$

with initial conditions f(0) = x and g(0) = y.

PF: "basic isomorphism".

Proof: formal derivation of H functions mimicks the replacement rules.

[First version: PDE on H(x, 1, z).]

And then...

Dream

- solve the fundamental differential system;
- get explicit expressions for GF, or explicit parametrizations;

• derive probabilistic results on the urn's distribution such as explicit laws or moments at finite time (slice problem), local limit laws, large deviations (limit problem).

And then...

Dream

- solve the fundamental differential system;
- get explicit expressions for GF, or explicit parametrizations;

• derive probabilistic results on the urn's distribution such as explicit laws or moments at finite time (slice problem), local limit laws, large deviations (limit problem).

Done

• in many particular cases, including famous problems (see Basile M.);

PF's amazing inventiveness, sense of metaphore

• for families of two-color urns (see below).

Analytic urns [183, FlaGabPek]

And then...

Dream

- solve the fundamental differential system;
- get explicit expressions for GF, or explicit parametrizations;

• derive probabilistic results on the urn's distribution such as explicit laws or moments at finite time (slice problem), local limit laws, large deviations (limit problem).

Done

- in many particular cases, including famous problems (see Basile M.);
- for families of two-color urns (see below).

But

theoretical obstruction due to the generic non solvability of the differentiable system in dimension ≥ 3 .

So

investigations to get results without explicitly solving the ODS (à suivre...).

Complex analysis

Article [183, FlaGabPek]. $\alpha, \delta \leq -1.$ $h = s - \alpha - \delta.$

The functions H are parametrized by the analytic inverse of the Abelian integral

$$\int_{\{u^h+v^h=1\}} u^{-\alpha-1} v^{\alpha+\delta} du.$$

Conformal mapping theory, underlying Riemann surface, elementary kite that generate a fundamental polygonal domain, beautiful figures (*FP's enthusiasm and pride*).

Classification of "elliptic" urns, parametrized by Weierstrass \wp functions.

Definition 1. *The* fundamental polygon *d a n urn model is the (closure of) the union of h regularly rotated versions of the elementary kite about the origin.*

The elementary kite and the fundamental polygon of the urn

 $\left(\begin{array}{cc} -1 & 4 \\ 4 & -1 \end{array}\right)$

PF's pictures or slides

Another view of the image of $(R_0 \cap H)$ by I(u) giving the fundamental triangle T: a representation of the images of rays emenating from 0 and of circles centred at 0

17