How Philippe Flipped
Coins to Count Data

December 16th, 2011

1/18

0. | DATA STREAMING ALGORITHMS|

Stream: a (very large) sequence S over (also very large) domain D
S=5 55 " s, s;eD

consider S as a multiset

M=m" m®? ... mSfo

Interested in the following estimating quantitive statistics:

— A. Length .=/

— B. Cardinality := card(m;) = n (distinct values) — this talk
— C. Frequency moments = P peRs

Constraints:

> very little processing memory
on the fly (single pass + simple main loop)
no statistical hypothesis

v

v

v

accuracy within a few percentiles
2/18

Historical context

» 1970: average-case — deterministic algorithms on random input
» 1976-78: first randomized algorithms (primality testing, matrix

multiplication verification, find nearest neighbors)

» 1979: Munro and Paterson, find median in one pass with ©(y/n)

space with high probability
= (almost) first streaming algorithm

In 1983, Probabilistic Counting by Flajolet and Martin is (more or less)
the first streaming algorithm (one pass + constant/logarithmic memory).

Go /gle scholar

Pi ilistic counting i for data base

P Flajolet... - Joumnal of computer and sysiem sciences, 1985 - Elsevier

Abstract This paper introduces a class of prebabilistic counting algerithms with which one
can estimate the number of distinct elements in a large collection of data (typically a large
file stored on disk) in a single pass using only a small additional storage (typically less ...
Cited by 628 - Related articles - All 36 versions

Probabilistic counting
P Flajolet... - Foundations of Gomputer Science, ..., 1983 - iesexplore.ieee.org

Abstract We present here a class of probabilistic algorithms with which cne can estimate the

number of distinct elements in a collection of data (typically a large file stored on disk) in a
single pass, using only 0 (1) auxiliary storage and 0 (1) operations per element. We ..
Cited by 111 - Related articles - All 7 versions

Combining both versions: cited about 750 times = second most cited
element of Philippe's bibliography, after only Analytic Combinatorics.

3/18

Databases, IBM, California...

In the 70s, IBM researches relational databases (first PRTV in UK, then
System R in US) with high-level query language: user should not have to
know about the structure of the data. ;

= query optimization; requires cardinality (estimates)

SELECT name FROM participants

WHERE
sex = "M" AND
nationality = "France"

Min. comparisons: compare first sex or nationality?

G. Nigel N. Martin (IBM UK) invents first version of “probabilistic
counting”, and goes to IBM San Jose, in 1979, to share with System R
researchers. Philippe discovers the algorithm in 1981 at IBM San Jose.

7 - [}) .
As 1 pasd over Hu tyg\.mz , L oraied ek [3 on Tm
k‘éu Y" Wﬁaﬂn\ Cowsi dtand vw\A‘n'L: w_r,,JmLmj ko

b wha
tnd wambed MrJawoLL:vﬁl *A'\V‘*W{"“W T fonat ,"rvuw(: J_o
e

0

Cumdh r;uwa gw .
]

4/18

1. [HASHING: reproducible randomness

» 1950s: hash functions as tools for hash tables

» 1969: Bloom filters — first time in an approximate context

» 1977/79: Carter & Wegman, Universal Hashing, first time
considered as probabilistic objects + proved uniformity is possible in
practice

hash functions transform data into i.i.d. uniform random variables or
in infinite strings of random bits:

h:D— {0,1}* I
that is, if h(X):b1b2~-', E i ! H—
AN LM EingD b
then P[by = 1] =Pl =1]=... =1/2 AR —
i A
» Philippe’s approach was experimental unhashed hashed

> later theoretically validated in 2010: Mitzenmacher & Vadhan

proved hash functions “work” because they exploit the entropy of the
hashed data

5/18

2. [PROBABILISTIC COUNTING (1983)

For each element in the string, we hash it, and look at it
S = S1 Sp S3 - = h(Sl) h(Sz) h(53) s

h(v) transforms v into string of random bits (0 or 1 with prob. 1/2).
So you expect to see:

Oxxxx... > P =1/2 10xxx... - P=1/4 110xx... - P =1/8
Indeed
P[[LTLT0Tx[x]] = Pl = 1) Flb = 1] Blby = 0] = &

6/18

2. [PROBABILISTIC COUNTING (1983)

For each element in the string, we hash it, and look at it
S = S1 Sp S3 - = h(Sl) h(Sz) h(53) s

h(v) transforms v into string of random bits (0 or 1 with prob. 1/2).
So you expect to see:

Oxxxx... > P =1/2 10xxx... - P=1/4 110xx... - P =1/8
Indeed

P[[TTTT0 > [x [] = Blby = 1] Pls = 1] -Bl5y =0] = -

Intuition: because strings are uniform, prefix pattern 10 .- appears
with probability 1/2k+1
= seeing prefix 1X0--- means it's likely there is n > 2¥*+1 different strings

Idea:
> keep track of prefixes 1k0--- that have appeared
> estimate cardinality with 2P, where p = size of largest prefix

6/18

Bias correction: how analysis is FULLY INVOLVED in design

Described idea works, but presents small bias (i.e. E[2P] # n).

Without analysis (original algorithm)

After all the values have been processed, then:
if M(MAP)=000, then RESULT=LO (MAP) -1
if M(MAP)=111, then RESOULT=LO (MAP) +1
otherwise RESULT=LO (MAP).
For example,
if MAP was 000000006000000000000000001111111
LO(MAP) is 8 and M{MAP) is 000: RESULT=7
if MAP was 00000000000000000000011101111111
L0 (MAP) is 8 and M(MAP) is 111: RESULT=9
if MAP was 00000000000000000000001003111111
L0 (MaP) is 8 and M(MAP) is 010: RESULT=8
the three bits immediately after the first 0
are sampled, and depending on whether they
are 000, 111, etc. a small £1 correction is

applied to p = p(bitmap)

With analysis (Philippe)
Philippe determines that
E[2P] =~ ¢n

where ¢ ~ 0.77351... is defined by

)y (P)

:ev\fHVpH (4p +2)1"
(4p)(4p +3)

=1

such that we can apply a simple cor-
rection and have unbiased estimator,

Z:= ézp E[Z] = n

7/18

The basic algorithm

» h(x) = hash function, transform data x into uniform {0,1}°° string
» p(s) = position of first bit equal to 0, i.e. p(1K0---) =k +1

procedure ProbabilisticCounting(S : stream)
bitmap := [0, 0, ..., 0]
for all x € S do
bitmap[p(h(x))] :=1
end for
P := p(bitmap)
return - 2°
end procedure

Ex.: if bitmap = 1111000100 -- then P =5, and n~ 25/¢ = 20.68...

Typically estimates are one binary order of magnitude off the exact result:
too inaccurate for practical applications.

8/18

Stochastic Averaging

For instance for m = 4,

00bsby - - -
Olbsby - --
10b3by - - -
11bsby - --

h(x) =

i

Ll

To improve accuracy of algorithm by 1/y/m,
elementary idea is to use m different hash
functions (and a different bitmap table for each
function) and take average.

= very costly (hash m time more values)!

Split elements in m substreams ran-
domly using first few bits of hash

h(V) = b1b2b3b4b5b6 s

which are then discarded (only
bybsbg - - - is used as hash value).

bitmapgo[p(bsbs - --)] =1
bitmapg [p(bsbs---)] =1
bitmap,g[p(bsbs---)] =1
bitmapy; [p(bsbs - --)] = 1

9/18

Theorem [FM85]. The estimator Z of Probabilistic Counting is an
asymptotically unbiased estimator of cardinality, in the sense that

E,[Z] ~n
and has accuracy using m bitmaps is

on[Z] _ 078
el

Concretely, need O(mlog n) memory (instead of O(n) for exact).

Example: can count cardinalities up to n = 10° with error £6%, using
only 4096 bytes = 4 kB.

10/18

3. [from Prob. Count. to LogLog (2003)

PC: bitmaps require k bits to count cardinalities up to n = 2

Reasoning backwards (from observations), it is reasonable, when

estimating cardinality n = 23, to observe a bitmap 11100 - - -; remember
» by =1 means n > 2
» bo =1 means n > 4
» b3 =1 means n> 8

WHAT IF instead of keeping track of all the 1s we set
in the bitmap, we only kept track of the position of the
largest? It only requires log log k bits!

In algorithm, replace
bitmap;[p(h(x))] :=1 by bitmap; := max {p(h(x)), bitmap;,}

For example, compared evolution of “bitmap”:

Prob. Count.: 00000--- 00100--- 10100--- 11100--- 11110---
Loglog: 1 4 4 4 5

11/18

loss of precision in LoglLog?

Probabilistic Counting and LoglLog often find the same estimate:

Probabilistic Counting 5

LoglLog 5

bitmap 1 1 1 1 0 0 0 O
But sometimes differ:

Probabilistic Counting 5

LoglLog 8

bitmap 1 1 1 1 0 0 1 O

Other way of looking at it, the distribution of the rank (= max of n
geometric variables with p = 1/2) used by LoglLog has long tails:

12/18

SuperLoglog (same paper)

The accuracy (want it to be smallest possible):
» Probabilistic Counting: 0.78/+/m for m registers of 32 bits
» Loglog: 1.36/\/m for m small registers of 5 bits

In LoglLog, loss of accuracy due to some (rare but real) registers that are
too big, too far beyond the expected value.

SuperLoglog is LoglLog, in which we remove § largest registers before
estimating, i.e., § = 70%.

> involves a two-time estimation

» analysis is much more complicated

» but accuracy much better: 1.05/1/m

13/18

from SuperLoglLog to Hypertogltog... DuperLoglog?!

V gy @—/ oV 4, Zoot

G R
E(Xﬂ@li b=1,2,3,..

?(K>¢¢)’4 £t,2,3 -
Fixew- 4 »7/-/ P(xew)=A-1/2%.

Hwkikm’) Hy = Mac'x(xm - XN)) X(b)é gjﬂm (/gj
Pl cb)e (&) { Voo, koot s,

f V=0 wilh coedi 0%
[max(£43)= 0]

NO I'VVZG(QL\H—"‘]’ :EW(J, \672?/_\ [O‘J’[U/‘\//MD(J{H/} ‘31 4&3‘ \‘}

L@L S = H(IB T H\E(W')/ [,f:p INvn 0'6 ﬁ/} Vl/\cl-éfémgw} lC/éwd

E(S x2g2) =™ Var (S p2bg2) =27 (3002 1)
m m. J
&i ﬁ - \,m ;v’i.CVBXﬁé. | 7()”) 14/18

JONNAONRERDE |

4. |“HyperLoglLog:

the analysis of a near-optimal cardinality estimation algorithm” (2007)

» 2005: Giroire (PhD student of Philippe’s) publishes thesis with
cardinality estimator based on order statistics

» 2006: Chassaing and Gerin, using statistical tools find best
estimator based on order statistics in an information theoric sense

The note suggests using an harmonic mean: initially dismissed as a
theoretical improvement, it turns out simulations are very good. Why?

15/18

Harmonic means ignore too large values

X1, Xa, ..., X, are estimates of a stream'’s cardinality
Arithmetic mean Harmonic mean
X1+ X +...+ X
A= 1tXet.. +Am H:= lm T
m x Tttt X
Plot of A and H for X; = ... = X351 = 20 000 and X3, varying between
and 5 000 and 80 000 (two binary orders of magnitude)
21500;
21000;
20500;
—3po06 0006 datos Boteo " Gote7oboo ot 32
19 E
- how A and H vary when only one term differs from the rest
18500 -

16/18

The end of an adventure. HyperLoglog = sensibly same
precision as SuperLoglog, but substitutes algorithmic clev-
erness with mathematical elegance.

Accuracy is 1.03/,/m with m small loglog bytes (= 4 bits).

Whole of Shakespeare summarized:

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

Estimate 7 =~ 30 897 against n = 28 239. Error is +-9.4% for 128 bytes.

Pranav Kashyap: word-level encrypted texts, classification by language.

17/18

Left out of discussion:

» Philippe’s discovery and analysis of Approximate Counting, 1982
(handle a counter up to n with loglog n memory)

> a beautiful algorithm, Adaptive Sampling, 1989, which was ahead of
its time, and was grossly unappreciated... until it was rediscovered in
2000

PDF + all algorithms implemented in Mathematica + video of Philippe
giving a wide-audience talk on data streaming algorithms:

http://1lip6.fr/Jeremie.Lumbroso/pfac.php

18/18

