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Q: Why and how Gaussian law is so common? |
(from an analytic viewpoint)




AIM HERE (FOR GAUSSIAN LAW IN AC)

Survey major techniques, focusing on PF-papers

A simple classification will be given




GAUSSIAN (NORMAL) DISTRIBUTION
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BINOMIAL TO GAUSSIAN: LOCAL LIMIT THEOREM

Toss n fair coins; how many heads?

de Moivre (1738):




BINOMIAL TO GAUSSIAN: CENTRAL LIMIT THEOREM

PIRV

sup —0




CENTRAL LIMIT THEOREM (CLT)

or Asymptotically normal, Asymptotically Gaussian , ...

lim sup
n—oo X

P (X"_“" <x) —o(x)




CENTRAL LIMIT THEOREM (CLT): FIRST USE

CLT first appears in 1920 in the title

Uber den|zéntralen Grenzwertsatz|der Wahrscheinlich-
 keitsrechnung und das Momentenproblem.

Ton MATH. Z. 8 (1920) 171-181,
Georg Pélya in Zirich. DOI: 10.1007/BF01206525

CHAPTER VI

RA;EOM THE NORMAL DISTRIBUTION AND
VARIABLES AND THE CENTRAL LIMIT THEOREM
PROBABILITY
DISTRIBUTIONS 1. The normal distribution function® ® (x) is defined by the
A relation Lo e
H.CRAMER D (r)=—x e dt.
® x/znf -
The corresponding normal frequency function is /h
-z ~
O (z)= ; e 2. i

Vi 1931985




CENTRAL LIMIT THEOREM: EARLY DEVELOPMENTS

Abraham de Moivre Pierre-Simon Laplace Carl Friedrich Gauss
(1667-1754) (1749-1827) (1777-1855)



CENTRAL LIMIT THEOREM: EARLY DEVELOPMENTS

Pafnuty L. Chebyshev Andrey A. Markov Aleksandr M. Lyapunov
(1821-1894) (1856-1922) (1857-1918)



BOOKS ON HISTORY OF CENTRAL LIMIT THEOREM

l THE HISTORY
OF STATISTICS
L " of Uncertainty
r . ofi HANS FISCHER

CENTRA

A History of the
Central Limit
Theorem

‘_;__‘I Springer

William J. Admas S. M. Stigler Hans Fischer
1974 1990 2011



GAUSSIAN LIMIT LAW: AN ANALYTIC PATTERN

The most classical approach

Sums of RVs — Char. fun. Gaussian law

_ . —t2/D
S0 = Sagen Xi| — —

— S, ~ A4 (un,a°n) (convergence in distribution)

Xn=pn ; u t n
o (58 7) < ot (1)
av/n

2 n
— e~ Vit (eff\f it=gat >

N"'*,\,




GAUSSIAN LIMIT LAW: AN ANALYTIC PATTERN

The general question

Q: Limit distribution of X, and finer properties?

The Flajolet pattern

Random Generating -
Combinatorial Functions L.Gn?.lislsj:ns
Structures Zn,k an,kykzn = -

Algebraic Singular

Analytic




ANALYTIC COMBINATORICS

Combinatorial
Structures or
Algorithms Singularity
Analysis
/ Asymptotic
c . & Stochastic
UGS Properties
Func- — P
tions (or —[ Saddle-point
moments) Method

Focus on limit law = Gaussian



GAUSSIAN LAW IN ANALYTIC COMBINATORICS

Combinatorial
Structures or Singularity

Algorithms Analysis

I /‘ N\
CLT,
Generating LLT, ...
Func- el
tions (or —| Saddle-point
moments) Method




SINGULARITY ANALYSIS

Singularity analysis: f(z) =) a,z"

WLOG, assume the (finite) singularity z = e ¢ =1
Fle)~Dgd™  (c~oy
j=0

then (under suitable conditions)

Asymptotic expansion of f near the dominant singularity

)

Asymptotic expansion of a, at infinity

Suitable for finite singularity and polynomial growth



SADDLE-POINT METHOD

Saddle-point method: f(z) = a,z"

1
an =5 27" (2)dz < r"f(r) (0<r<p< o).
L [

So |a, < minge,<, r="f(r).
If f(z) blows up fast enough (>>
polynomial) near p, then

saddle by

r="f(r)

V2ma2(r)

ap ~

rf'(r) o o2() rf'(r) rzf”(r) 3 rf'(r) 2
= 0= e ()

Suitable for fast-growing functions




A CLASSIFICATION BY APPROACH

CLT by singularity analysis

e ¥ (cn,c’n): moving singularity
e .V (clogn,c'logn): moving exponent

o N (un,02): quasi-power framework

CLT by saddle-point method
o ¥ (cn,c’n): high powers of GFs f(z,y)"" or g(z,y)f(z)""

o N (un,o2): de-Poissonization (Jacquet-Szpankowski)

o N (un,02): Sachkov’'s framework

CLT by other approaches

e Method of moments (analytic, probabilistic, ...)

e Sum of RVs, U-statistics, etc.

e Martingale, m-dependent, branching processes, etc.
e Stein’s method, ...




CLT BY SINGULARITY ANALYSIS

linear = moving singularity
logarithmic = moving exponent

Two prototypes: {

fzy) =D E(y)2" (y~1)
n>0
s — iy = (3:35)
1 N
=gyt =E00)~ ()
ifg::gii)o:ls — exp (y log T z> — A (log n, log n)
fzy)=(1-2) = E(y%) ~ ?y(;; _ e";(li';g”




THE HISTOGRAMS

Stirling # 1st kind Eulerian numbers




CLT BY SINGULARITY ANALYSIS: ANALYTIC
SCHEMES

Two typical cases

exp(log) (1—2)°0) — _#(clogn,c logn)
alg-log (1—p(y)z2) ¢ — A (cn, c'n)

Combinatorial

CLT or LLT
Structures

L. Complex
Bivariate GFs .
Analysis
Classification of

Singularities —
Analytic Schemes



ANALYTIC SCHEMES

Integer partitions: long history

Hardy-Ramanujan (1917), Statistical physicists in 1930’s,
Haselgrov and Temperley (1954), Lee (1993), Richmond
(1994), Mutafchiev (2011), etc.

Asymptotic analysis

Hayman (1956) (the classical paper, admissible functions for
saddle-point method), many follow-up papers

Analytic Combinatorics (early developments)

Bender (1973) (the pioneering paper), Knopfmacher (1975),
Charalambides (1976), Canfield (1977), Bender and
Richmond (1983), Bender, Richmond and Williamson
(1983), Flajolet and Odlyzko (1984), Charalambides and
Kyriakoussis (1984), Kyriakoussis (1984), Flajolet and Soria
(1990, 1993), Mutafchiev (1992), Gao and Richmond
(1992), H. (1994, 1996, 1998), etc.




A VERY SIMPLE SCHEME

Frobenius (1910)-Harper (1967)

If E (y*) has only real zeros and V(X,) — oo, then X, ~ 4.

Examples: binomial, Stirling numbers of both kind, Eulerian
numbers, matching polynomials, occupancy problem,
hypergeometric, etc.

holds also when all zeros lie in the left half-plane

All roots real = difficult to prove



THREE ANALYTIC SCHEMES: .4 (clog n, ¢’ log n)

Flajolet and Soria (1990) [88] exp(log): (NI E1¢tA))

Cycles in permutations, rounds in children’s yards,
components in 2-regular graphs, cycles in random mappings,
cycles in random mapping patterns, irreducibles in
polynomials (over finite fields), arithmetical semigroups, etc.

Bergeron, Flajolet and Salvy (1992) [96]

Depth in increasing trees (binary, recursive, plane-oriented, ...)

)" /0 “g(0) Ve

Flajolet and Lafforgue (1994) [117]
Depth in quadtrees

ci(z, or—
Z (z,y)

(1—2z)y 8z f(z,y) = 0 = linear systems

0<<r



A BOOK BY ARRATIA, BARBOUR AND TAVARE

Logarithmic
Combinatorial
Structures:

a Probabilistic |
Approach /




CLT BY SINGULARITY ANALYSIS: LINEAR CASE

PF-papers with .4 (cn, c’n) (explicit)

o Flajolet (1985) [47]: # wagons in random trains

h(z)
1-yg(z)
o Flajolet and Soria (1993) [112]:

(ew) (=rem)

(extending Bender’s meromorphic scheme), many
examples (ordered set partitions, integer compositions,
etc.)




CLT BY SINGULARITY ANALYSIS: LINEAR CASE

PF-papers with .4 (cn, c’n) (explicit)

o Flajolet, Gourdon and Salvy (1993) [107]: coefficients of
polynomials

Iogi
z (1 —ylog 1%2)

e Banderier and Flajolet (2002) [168]: final altitude of

meander
8(z,y)
1—2zP(y)
e Nicodeme, Flajolet, and Salvy (2002): pattern
occurrences
8(z,y)

det(/mxm — zM(y))




CLT BY SINGULARITY ANALYSIS: LINEAR CASE

PF-papers with .4 (cn, c’n) (implicit)

e Bergeron, Flajolet and Salvy (1992) [96]: leaves in

increasing trees

f(zy) dt B
/o (y— Do+ o(t) -

o Flajolet, Gourdon and Martinez (1997) [135]: patterns
in random binary search trees

0
5, [y =f(z, y)> +cm(y — 1)z"t

o Flajolet and Noy (1999) [144]: non-crossing geometric
configurations

> cz,y)f(zy) =0

0<j<r




CLT BY SINGULARITY ANALYSIS: LINEAR CASE

PF-papers with .4"(cn, ¢'n) (implicit)
o Flajolet, Gabarré and Pekari (2006) [183] (also [186]):
balls in urns

(1 _ Syb+sz> % <yb+s+1 _ yl—a) g; _ toyb+5f -0

e Boéna and Flajolet (2009) [198]: symmetry in evolutional
trees

f(z,y) = 3F%(z,y) +z+ (y - 3) f(Z%,¥%)

Proving (1 — p(y)z)~“ may be very challenging



QUASI-POWER FRAMEWORK

The prototype
E (e(Y1+...+Y,,)it) = (t)"

. F (e(Y1+..A+Yn—un)it/(U\/ﬁ)) . =P

— Yy + -+ Y, ~ A (un,o%n)

First extensions
Bender and Richmond (1983): multivariate CLT and LLT

E(y*) ~ h(y)g(y)”  (y~1)

see also Kyriakoussis (1984) (more restricted version)

my PhD Thesis (1994); “Quasi-Power” due to PF

E(eX%) = h(s)e*e) (14 O (e,)) = A (cn, c'An)




TWO CLTs BY QUASI-POWER FRAMEWORK

Flajolet and Vallée (1998) [144]: .4 (cn, c'n)

Continuants in continued fraction algorithms

1

B(Q,(0%) ~ s | 15| (0 ~ hole(o”

(Dirichlet series, transfer operators, spectral properties)

Flajolet, Szpankowski and Vallée (2006) [164]: .4 (cn, c'n)

Occurrences of pattern (as a subsequence) in random texts
with all gaps finite

E(y*") ~ h(y)g(y)"® (6 = sum of gaps)

(finite-state automaton, matrix analysis, Perron-Frobenius)




CLT BY SADDLE-POINT METHOD

o Flajolet and Odlyzko (1984) [45]:

fir1(z) = Z ¢i(2)F(z) = fi(z) ~ h(z)e? &)
0<j<d

o Flajolet, Poblete and Viola (1998) [142]: # moves in
sparse hashing table

e Mahmoud, Flajolet, Jacquet and Regnier (2000) [159]:
distributive sort

e Banderier, Flajolet, Schaeffer and Soria (2001) [152]
[160]: composition scheme




CLT BY SADDLE-POINT METHOD

Functional equations via analytic de-Poissonization

Mahmoud, Flajolet, Jacquet and Regnier (2000) [159]:
Radix selection

Sy z
f(z,y) = belb=¥?/bf (%,y) +2z(1-y)

(can be solved explicitly and then apply Rice’s integral)

Radix sort yz
f(z,y) = f° (;,y) +2z(1-y)

Scahkov's extended Quasi-Power framework (1997)

If E(y*") ~ ye& ™), where g, € C3[1 — 6,1+ 4] and

W%O.ye[l—&l_kg], then

Xn ~ N (gn(1) + cn, 8(1) + &7 (1))




DE-POISSONIZATION: IDEAS

Poisson heuristic: f(z) := e™? > om0 @nZ"/n!

If a, doesn’t grow too fast, then a, ~ (n).

Analytic justification: Cauchy + saddle-point method

Jacquet & Szpankowski (1998)

nl ol

= "1e?F(2)d
an =5 ‘z‘:nz e’f(z)dz
le?f(z)| <] el=o)ll

. 1.
> |F(2)| < el?l?

foa™ Jy®

|:
|0|<e e<|f|<m

Then a, ~ f(n).




CLT BY SADDLE-POINT METHOD

Flajolet and Noy (2000) [155]

# crossings in random chord diagrams

o 2"n! 2n e(5)s
() i = 2 (n—i—k)(_l)k(l—es)”

—n<k<n

1 /wexzm sinh’(¥* - )"
V2m Jo egsinh(g)

Then JV(% Z—) by saddle-point method




DIFFERENT (LESS ANALYTIC) APPROACHES TO CLT

Flajolet and Golin (1994) [105][115]

Cost of top-down mergesort

Xn = XL"/2J T X|ikn/2'\ + Y
= X, ~ A (nlogy, n+ Pi(log, n)n, Px(logy, n)n)

’sum of independent RVs ‘, Lyapunov’s condition ((2 + §)-th

absolute moment).
—

Flajolet, Szpankowski and Vallée (2006) [164] [191]

Occurrences of hidden patterns in random texts (with b
unconstrained blocks)

Xp ~ A (cn®, ' n?P71)

Method of moments \, combinatorial arguments, and
analytic tools




PF'S CONTRIBUTION TO LIMIT LAWS

Clarify the deep connection between

Singularity
Perturbation

RN

Asymptotic [ Stochastic
Enumeration ~| Properties




PF'S CONTRIBUTION TO LIMIT LAWS

Systemize (schematize) the use of

Random . .
. . Generating Gaussian
Combinatorial ] . .
Functions Limit Laws
Structures
A Singular
Algebraic Analytic g




PF'S CONTRIBUTION TO LIMIT LAWS

Modernize classical tools

Classical ana- Autodmatlc
lytic techniques modern
tools

| Research becomes easier after him |




PF'S CONTRIBUTION TO LIMIT LAWS

LLT and Large deviations

Prove LLT for
e wagons in trains [47]
o leaves of BSTs [135]

@ composition scheme [152], sup|onP (Xy = |pn + x0n])
[160] x

e motif statistics [151], ex/2
[174] ~ | =)

e urns [183]
e symmetry in trees [198],

some enhanced with explicit large deviations estimates.

A. M. Odlyzko (1995)

“Analytic methods are extremely powerful, and when they
apply, they often yield estimates of unparalleled precision.”




HISTOGRAM OF THE #(TITLE-WORDS) IN ALL

PF-PAPERS
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HISTOGRAM OF THE #(TITLE-ALPHABETS) IN ALL
PF-PAPERS
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GAUSSIAN LAW EVERYWHERE

Same as others

M—
Probably more Probably less
than others than others
s g
Definitely more Definitely less
than others than others
i —H-—

M
2
o
I

] K-

2% 14% 34%: 34% 14% 2%
S0 = Standard Creviation




GAUSSIAN LAW EVERYWHERE

AS ANYONE




GAUSSIAN LAW EVERYWHERE
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