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Search Trees

Search trees are fundamental data structures in all areas of
Computer Science

© Data-driven search trees, e.g., binary search trees

@ Space-driven search trees, e.g., tries
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Search Trees and Bubble Memories

SEARCH TREES AND BUBBLE MEMORIES (*)

by Philippe FLajoLeT ('), Thomas Otrmann (%) and Derick Woop ()

Communicated by J. BERSTEL

Abstract, — We consider the storage of binary search trees in major-minor loop configurations
of bubble memories. This leads, under reasonable assumptions, o the investigation of two cost
measures for binary search trees, free search cost FCOST, and root-reset search cost RCOST.
We analyze the average case behaviour of both cost measures and characterize their associated
minimal cost trees. The average case average case nalyses are themselves of interest since they
are examples of the application of a recently developed methodology.

T. Ottmann D. Wood

@ Philippe Flajolet, Thomas Ottmaan, and Derick Wood.

Search trees and bubble memories.
RAIRO. Informatique Théorique (Theoretical Informatics), 19:137-164, 1985.



Search Trees and Bubble Memories

Bubble memories emerged during the 70s as a very promising
technology for permanent storage.

The improvements of magnetic disk technologies in the early 80s
signaled the decline of the bubble memory.



Search Trees and Bubble Memories

One important problem at the time was how to deploy data
structures in bubble memories in the most efficient way—taking
advantage of some of its features and avoiding some of the pitfalls.
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Search Trees and Bubble Memories

The most efficient way to store BSTs in bubble memories was a
circular double-linked lists.

Two search strategies were contemplated giving rise to two different
measures of cost:

FCOST(T) = 3 dist(u, ),
uvinT
RCOST(T)= 3 rdist(u,v),

u,vinT

with rdist(u, v) = dist(u, v) if v is a descendant of w in T', or
rdist(u, v) = dist(root, v) +
path length of unsuccessful search of v in the subtree rooted at u



Search Trees and Bubble Memories

@ The paper is fine early example of the symbolic method that
Flajolet so firmly contributed to establish as one of the pillars
of Analytic Combinatorics.

@ It also anticipates the singularity analysis which would
consolidate Philippe’s international recognition and
preminence, and so profoundly shaped the area.

@ In many aspects, it is a very representative paper using the
emerging “technologies” of the eighties, focusing in
average-case complexity.



Search Trees and Bubble Memories

Example

Recursive definition:

p(o(t1,t2)) = p(t1) + p(t2) + [ta] + |t2]
d(o(t1,2)) = d(t1) + d(t2)
+2(p(t1) + [t1]) (22| + 1) + 2(p(22) + [£2])(|E1] + 1)

Functional equations:

_;/p

+4/ (2) + S(2)))T(2)dz




Varieties of Increasing Trees

VARIETIES OF INCREASING TREES

Frangois Bergeron Philippe Flajolet Bruno Salvy
LACIM Algorithms Project Algorithms Project
Université du Québec & Montréal ~ INRIA Rocquencourt  INRIA Rocquencourt
Case Postale 8888, Succursale A 78153 Le Chesnay 78153 Le Chesnay
Montréal, Québec H3C3P8 France France
Canada
Abstract

An increasing tree is a labelled rooted tree in which labels along any branch from the root
g0 in increasing order. Under various guises, such trees have surfaced as tree representations
of permutations, as data structures in computer science, and as probabilistic models in
diverse applications.

We present a unified generating function approach to the enumeration of parameters on
such trees. The counting generating functions for several basic parameters are shown to be
related to a simple ordinary differential equation,

Lrer=ewe),

which is non linear and autonomous.

Singularity analysis applied to the intervening generating functions then permits to ana-
lyze asymptotically a number of parameters of the trees, like: root degree, number of leaves,
path length, and level of nodes. In this way it is found that various models share common
features: path length is O(nlogn), the distribution of node levels and number of leaves are
asymptotically normal, etc.

F. Bergeron B. Salvy

a Francois Bergeron, Philippe Flajolet, and Bruno Salvy.

Varieties of increasing trees.

In Jean-Claude Raoult, editor, Proceedings of the 17th Colloquium on Trees in Algebra and
Programming (CAAP '92), volume 581 of Lecture Notes in Computer Science, pages 24—48,
Berlin/Heidelberg, 1992. Springer.



Varieties of Increasing Trees

@ An increasing tree is a labelled rooted tree such that the labels
in the path from the root to any node in the tree are
increasing. Increasing trees might be plane or non-plane.

@ In Varieties, Bergeron, Flajolet and Salvy consider “simple
families of increasing trees” (both plane and non-plane),
developing an unified framework for their enumeration and the
analysis of some of their fundamental parameters, e.g., the
total path length



Varieties of Increasing Trees

@ The paper extends to increasing trees the programme in the
famous papers by Meir and Moon on simple families of trees

@ Binary increasing trees (a.k.a. heap ordered trees,
tournaments) are isomorphic to binary search trees

@ Recursive trees is another important family failing within this
framework



Varieties of Increasing Trees

@ i = number of “symbols” of arity & = |Sk|, so > 0, s >0
for some k > 2,

T=8So+S1 xTT+S x"T xT+--
A x5 B denotes the boxed product of 4 and B: the smallest
label must be attached to an atom in the A-component
o Plane trees: ¢(u) =3 ¢ spu”
o Non-plane trees: ¢(u) = Y g0 Sku”/k!
e Enumeration: Y, = n![z"]Y(_z) = # increasing trees of size n

2 =¥ (2))



Varieties of Increasing Trees

@ For instance, the number Y,, of increasing trees of size n is, for
polynomial varieties (¢ is a polynomial of degree d)

Y Nn'Kp_n _(d 2)/(d_1)

OOdt

where p = [; , K is a constant depending on the family

@ The paper also analyzed inductive parameters, i.e., those that
can be described by the following recursion:

c(t) = c(t1) + -~ c(tr) + F(I2])

for a tree t with subtrees t;, ..., ¢,



AofA in the 90s

@ Singularity analysis coming of age —it is very well developed
and understood, and becomes the building block for many
advances in the 90s

e Pioneering works, e.g., Flajolet & Soria (1990) on Gaussian
limiting distributions for the number of components in random
combinatorial structures

@ Hwang's quasi-power theorem in the mid 90s provides a
powerful technique to easily establish Gaussian limiting
distributions and rates of convergence to the CLT

@ Increasing interest in limiting distributions; average complexity
and variance are not the end of the picture



Patterns in Random Binary Search Trees

X. Gourdon

|
Patterns in Random Binary Search Trees

Philippe Flajolet,' Xavier Gourdon,' Conrado Martinez*

"Algorithms Project, INRIA-Rocquencourt, F-78153 Le Chesnay, France

2Departament de Llenguatges i Sistemes Informatics, Universitat Politécnica de
Catalunya, Pau Gargallo, 5, E-08028 Barcelona, Spain

Received 11 October 1996; accepted 30 January 1997

ABSTRACT: In a randomly grown binary scarch tree (BST) of size 7, any fixed pattern
occurs with a frequency that is on average proportional to . Deviations from the average
case are highly unlikely and well quantified by a Gaussian law. Trees with forbidden patterns
occur with an ially small ility that is ch: i in terms of Bessel
functions. The results obtained extend to BSTs a type of property otherwise known for
strings and combinatorial tree models. They apply to paged trees or to quicksort with halting
on short subfiles. As a consequence, various pointer saving strategies for maintaining trees
obeying the random BST model can be precisely quantified. The methods used are based on
analytic models, ially bivariate ing function subje to singularity perturba-
tion asymptotics. © 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11, 223-244 (1997)

Key Words: binary search tree; limit distribution; pattern; random tree; singularity analysis



Patterns in Random Binary Search Trees

@ This paper was the outcome of my collaboration with Xavier
and Philippe on a few problems that | left open in my PhD

@ The goal was to analyze parameters such as the number of
occurrences of a given pattern u in a random binary search
trees, much in the same way Flajolet and Steyaert did with
simple families of trees



Patterns in Random Binary Search Trees

@ Ocurrences of patterns in random BSTs, like in random strings,
trees, permutations and many other combinatorial structures
fail under the very general and ubiquitous Borges' paradigm:
the number of occurences of a pattern u (or patterns in a
finite collection) has a Gaussian limiting distribution

@ All boils down to the study of

8
aF(z)y) = F2(ZJ y) + (y - 1)>‘(u)|u|z|u‘717
with A(u) the probability to obtain a BST with shape u

@ The change F(z,y) = —w,(z,y)/w(z,y) leads to a Riccati
DE and the solution is

w(2,Y) = An(2) — 2Bn(2)

with m = |u| and A, By, cylinder (Bessel) functions of order
—1/(m + 1) and 1/(m + 1) resp.; singularity pertubation
methods yield the various results about the limiting distribution



Patterns in Random Binary Search Trees

@ The paper also studied the probability that a random BST
does not contain occurrences of a pattern or very few (fixed k
occurrences — Poisson), local limit laws for the number of
occurrences, and the number K, of distinct subtrees in a
random BST

logl
K, < 4ln2-_" (1 +0 (ogogn))
Inn logn

A lower bound Q(n/logn) was proved by Devroye



© Multidimensional Search Trees



Multidimensional Search Trees

© K-dimensional Search Trees (K-d Trees)
@ Multiattribute Trees
© Quadtrees



K-dimensional Search Trees

A

W. Cunto C. Puech

Ia Philippe Flajolet and Claude Puech.
Tree structures for partial match retrieval.
In Proceedings of the 24th Annual Symposium on Foundations of Computer Science, pages
282-288. IEEE Computer Society Press, 1983.
Subsumed by [PF058]

@ Philippe Flajolet and Claude Puech.

Partial match retrieval of multidimensional data.
Journal of the ACM, 33:371-407, 1986.

@ Walter Cunto, Gustavo Lau, and Philippe Flajolet.
Analysis of kdt-trees: kd-trees improved by local reorganisations.
In Frank Dehne, Jorg-Riidiger Sack, and Nicola Santoro, editors, Proceedings of the 1989
Workshop on Algorithms and Data Structures (WADS '89), volume 382 of Lecture Notes in
Computer Science, pages 24—38. Springer, Berlin/Heidelberg, 1989.



K-dimensional Search Trees

A

W. Cunto C. Puech

@ Philippe Flajolet and Claude Puech.
Tree structures for partial match retrieval.
In Proceedings of the 24th Annual Symposium on Foundations of Computer Science, pages
282-288. IEEE Computer Society Press, 1983.
Subsumed by [PF058]

@ Philippe Flajolet and Claude Puech.

Partial match retrieval of multidimensional data.
Journal of the ACM, 33:371-407, 1986.

@ Walter Cunto, Gustavo Lau, and Philippe Flajolet.
Analysis of kdt-trees: kd-trees improved by local reorganisations.
In Frank Dehne, Jorg-Riidiger Sack, and Nicola Santoro, editors, Proceedings of the 1989
Workshop on Algorithms and Data Structures (WADS '89), volume 382 of Lecture Notes in
Computer Science, pages 24—38. Springer, Berlin/Heidelberg, 1989.



Partial match retrieval of multidimensional data

Partial Match Retrieval of Multidimensional Data

PHILIPPE FLAJOLET

INRIA, Rocquencourt, France

AND

CLAUDE PUECH

Université de Paris-Sud, Orsay, France and Ecole Normale Supérieure, Montrouge, France

Abstract. A preclse ana]ysus of pamal match retrieval of multidimensional data is presented. The
structures d here are ional search trees (k-d-trees) and digital tries (k-d-tries), as
well as structures designed for efficient retrieval of information stored on external devices. The methods
used include a detailed study of a differential system around a regular singular point in conjunction

with suitable contour integration techniques for the analysis of k-d-trees, and properties of the Mellin
integral transform for k-d-tries and extendible cell algorithms.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Pmblcms—mrnng and searching, G.2.1 [Discrete Mathematics]: Combina-
torics—counting problems; 3 H.3.3 [Inf ion Storage and Retrieval]: Information
Search and Retrieval—search process

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Analysis of algorithms, data structures, multidimensional search,
partial match, trees



Partial match retrieval of multidimensional data

e [PF058] constitutes a landmark in the analysis of
multidimensional data structures. Prior to the work of Flajolet
and Puech, the analysis of partial matches, orthogonal range
search, etc. assumed that, on average, the performance of the
index (kd-tree, quadtree, ...) would be as if it were perfectly
balanced—and this turned out to lead to wrong conclusions!

@ The paper studied the performance of partial matches in
kd-trees, kd-tries and grid files; the analysis showed that
digital methods (=space-driven) outperform the
comparison-based trees (=data-driven)



Partial match retrieval of multidimensional data
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Partial match retrieval of multidimensional data

@ The goal of a partial match query ¢ = (go, 41, - - -,4qk—1) with
g; € (0,1) or g; = x is to retrieve all records z in the kd-tree
such that z; = ¢; for all 7 such that g; # *; when g; = * we
say that the coordinate is not specified

o Partial match queries are assumed random, i.e., the specified
g; are independently and randomly drawn from (0, 1)

@ A key observation is that the shape of a random kd-tree is the
same as that of a random BST, i.e., any node has probability
1/n to be the root and subtrees are random independent
kd-trees



Partial match retrieval of multidimensional data

@ For the analysis, it is crucial to deal with query patterns u:
binary strings that indicate which of the s coordinates are
specified (S) and which of the remaining k — s are not (x)

@ The symbolic method + the BST model immediately yield

desn(2) 2cu(z) 1
dz  "1—-2z (1-2)?
2
£ (resal®)) = 21 el + e

where ¢y (2) = 32,50 E[Pnu] 2", GF of expected cost of a
partial match with query pattern u



Partial match retrieval of multidimensional data

@ The problem can be cast as the solution of a system of linear
differential equations

@ The paper is a good example of singularity analysis at its best:
we need no explicit solution to get asymptotic estimates for
the coefficients (here expected cost of the partial match)

@ The characteristic polynomial of the matrix gives the exponent

a, and a delicate analysis allows to derive a full asymptotic
expansion of d,(2) = (zcy(2))' around the singularity z = 1



Partial match retrieval of multidimensional data

@ The last part —a “preview” of what would be the systematized
and fully developed singularity analysis and transfer lemmas—
yields the asymptotics for the expected costs

E[Pn,u] = ,Buna(s/k)(l + 0(1)))

where G, is a constant depending on the query pattern and a
is the unique positive solution of

(a4 2)°(a+ 1)k = 2*



Partial match retrieval of multidimensional data

@ These results very quite surprising, as they showed that the
often conjectured expected cost ©(n'~*/*) is wrong:
a(s/k) >1—s/k

@ The paper does not end here: the analysis is also carried out in
kd-tries (the multidimensional analogue of binary tries) and
grid-files to show that partial match in these digital data
structures is more efficient on the average: E[P,] = ©(n' /%)

@ An explicitly given periodic fluctuation multiplies the main
order term in the expected cost of partial matches in both
kd-tries and grid files: Mellin transform and residue
computations are the key technologies involved here



Analysis of kdt-trees

e In [PF075], the analysis of partial match retrieval is extended
to kdt-trees; in kdt-trees all fringe subtrees of size < 2f 41
are locally balanced

@ The average cost of partial matches is
E[Pn] = Bn*/8)(1+ o(1)),

with B a constant depending on the specific pattern of search
and ¢, and a = a¢(z) the unique positive solution of

((a+t+ 1) ) *((a+t+2) ) = (t+2)7,

*=z(z+1)---(z+k—1)
e The paper also was the first to give V[P,] = ©(n2*)
N.B. P, is the cost of an idealized partial match in which the query specified values are
randomly picked at each subtree of the recursion, hence results about variance must be taken

with a grain of salt



Multiattribute Trees

‘4
D. Gardy

@ Daniéle Gardy, Philippe Flajolet, and Claude Puech.
On the performance of orthogonal range queries in multiattribute and doubly chained trees.
In Frank Dehne, J6rg-Riidiger Sack, and Nicola Santoro, editors, Proceedings of the 1989
Workshop on Algorithms and Data Structures (WADS '89), volume 382 of Lecture Notes in
Computer Science, pages 218—229. Springer, Berlin/Heidelberg, 1989.

@ Daniéle Gardy, Philippe Flajolet, and Claude Puech.

Average cost of orthogonal range queries in multiattribute trees.
Information Systems, 14:341-350, 1989.
Paper [GFP89b] is closely related.



Orthogonal Range Queries in Multiattribute Trees

e Multiattribute trees are a sort of “hybrid” data structure, closer
to digital search methods than to comparison based

@ Each record in the collection is a k tuple R = (71,...,7%)
where each r; belongs to a finite domain (= alphabet) D;

@ The multiattribute tree is basically a trie, and double chained
trees are an implementation equivalent to list-tries



Orthogonal Range Queries in Multiattribute Trees

@ Orthogonal range queries are modeled as k ranges, one per
domain, with the probability p;(m) that the ¢th range of the
query is of size m

@ The probability distribution for records stems from the
assumption that each attribute is independently chosen, with
probability 1/|D;| for the value of the ith attribute



Orthogonal Range Queries in Multiattribute Trees

@ The results of the paper rely heavily in symbolic methods; here
is a typical result: the expected cost of a random query in a
multiattribute of size n is

k—1 (d7d>]-)
Cn:].—i-zmlmg---Tfl,j(l— Z’ )
7=1 (n)

di = |Ds|,d>; = dj+1d542- - di, d 1= d>o



Orthogonal Range Queries in Multiattribute Trees

o Paginated variants and pruned variants are also investigated;
and [PF082] also gives formulas for simple and partial match
queries (corollaries)

@ The journal paper [PF082] explores the asymptotic behavior
under two possible scenarios: 1) n fixed with respect the size
of the domains, 2) n grows as the size of the domains grows

@ The conference paper [PF081] hinted at an interesting question
which was not further explored in [PF082]: the effect of the
ordering of the attributes in the cost of orthogonal range query



Quadtrees

G. Gonnet G. Labelle L. Laforest J.-M. Robson

Ia Philippe Flajolet, Gaston Gonnet, Claude Puech, and John Michael Robson.
The analysis of multidimensional searching in quad—trees.
In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA '91), pages 100-109, 1991.
Subsumed by [PF106].

Mamoru Hoshi and Philippe Flajolet.

Page usage in a quadtree index.

BIT, 32:384-402, 1992.

Philippe Flajolet, Gaston Gonnet, Claude Puech, and John Michael Robson.

Analytic variations on quadtrees.
Algorithmica, 10:473-500, 1993.

Philippe Flajolet and Thomas Lafforgue.

Search costs in quadtrees and singularity perturbation asymptotics.
Discrete & Computational Geometry, 12:151-175, 1994.

B & &

Philippe Flajolet, Gilbert Labelle, Louise Laforest, and Bruno Salvy.

Hypergeometrics and the cost structure of quadtrees.
Random Structures & Algorithms, 7:117-144, 1995.
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Page Usage in Quadtree Indexes

e [PF103] considers the filling ratio in a bucketed 2d quadtree;
when the number of points in a region is < B, we do not
subdivide any further and the elements are stored in a bucket;
Hoshi and Flajolet showed that this filling ratio (# of items
per bucket) is about 33%; some other questions are also
addressed like the number of occurrences of a fixed pattern in
a random quadtree —we would consider similar questions on
random BSTs a few years later in [PF135]

@ The techniques involved are now fairly standard, in particular,
clever applications of singularity analysis to obtain the
expected number of buckets (~ ygn) or to analyze the
asymptotic behavior of the filling ratios (Y — 3/B)



Page Usage in Quadtree Indexes

@ This paper was one early example were the use of Maple for
the analysis of algorithms was crucial, as indicated in many
points in the paper and

“The authors would like to acknowledge the constant
help and support of the Maple system that might
well have been a coauthor of the paper ..."

@ Philippe has been interested and made many theoretical and
practical contributions to Computer Algebra; and he was also a
very proficient Maple user



Analytic Variations on Quadtrees

e Analytic Variations on Quadtrees is the first rigorous and most
complete analysis of the performance of several important
operations on quadtrees until the date of its publication; there
was a preliminary version in SODA 91 [PF093]

@ The paper covers the analysis of the expected performance of
two fundamental operations on quadtrees of dimension d:
exact search and partial match



Analytic Variations on Quadtrees

@ The general framework laid out in the paper is that the
expected costs of interest can be cast as

C"n, =1, + Z Wn’ka,
0<k<n

for suitably chosen t,, and splitting probabilities 7y, &

@ Under the model of randomly and independently drawn points
in [0, 1]d this entails, for instance for d = 2, ¢t,, = n and
Tnk = %(Hn — Hy) for path length and ¢, = 1 and
4(n—k)
n(n+1)
e Similar, but more complicated forms for the 7, x can be found
for larger dimensions

for partial match

Tnk =



Analytic Variations on Quadtrees

@ The divide-and-conquer recurrences giving expected costs can
be translated into linear (integro)differential systems of
equations

@ For d = 2 the corresponding ODEs can be easily and explicitly
solved yielding exact and asymptotic expressions for the
expected cost of a search C,, and a partial match P,

n+1 H,
=H,—-—+—=1 1
Cn=Hn— ==+ 2~ =Inn+0(1)
P, = yn*,
I'(2a + 2)
= 17 —-3)/2 ~ 0.56 = —— =~ 1.595
a=(v )/ » Y= 3Pa s 1)

@ For larger dimensions the systems where not explicitly solved,
but singularity analysis can be carried out nevertheless, much
in the same way it was done for the analysis of partial match
in k-d trees



Analytic Variations on Quadtrees

@ The fundamental theory behind this is that the singularities of
the solution to the system arise from the singularities of the
coefficients

@ A particular important case is when the coefficient matrix is
meromorphic and the singularity is a simple pole — regular
singularity

@ The solutions to the homogeneous system are then of the form

(1—2)"¢ Z cn(l—2)7,
n>0
with a the roots of a polynomial (the indicial equation)

@ When the difference of two roots is integers then a second
family of solutions involing a log(1 — 2) enters teh picture

@ The particular solutions to the inhomogeneous system are
obtained via the variation of constants method

@ This path provides the sought answers, in particular,
Cpn=2Inn+0(1) and P, = 7an®(s/4) | the exponent a
being the same as for partial match in k-d trees



Search Costs in Quadtrees and Singularity Perturbation
Asymptotics

@ The paper [117] focuses in the costs of random successful
searches C, and random unsuccessful searches D,, (depth of
insertion) in random quadtrees of size n

@ Flajolet and Lafforgue show that suitably normalized versions
of both RVs weakly converge to normal distributions

@ They also show uniform exponential tails for the probability of
large deviations of D,, and a local limit theorem also exists



Search Costs in Quadtrees and Singularity Perturbation
Asymptotics

@ The fundamental methodological contribution is the singularity
perturbation method; under suitable conditions, if we have an
expansion F(z,u) ~ c(u)(1 — 2)~%*) around the dominant
singularity z = 1, uniform in u, then
[2"|F(2,u) = pn(u) ~ c(u) ZE(b(u)) directly leading to a
Gaussian limit distribution

@ The main difficulty was indeed the singular expansion of
F(z,u) (in turn a solution to a system of linear differential
equations) uniform in u; this involves a delicate analysis of the
behavior of the expansion for u near 1, i.e., the “perturbation”
around u =1

@ In the particular case of quadtrees of dimension d > 3, this
necessitated separately studying the cases of odd dimension
(easy) and of even dimension (integer differences between the
eigenvalues of the system when u = 1, no such difference
when u # 1 — “different” expansions of F(z,u)!)



Hypergeometrics and the Cost Structure of Quadtrees

e [PF122] is a sort of recap of the previous papers, with a general
framework to investigate additive parameters in quadtrees
(that includes internal path length, storage occupation, ...)

@ The key idea is to work with the Euler transform of the

corresponding GFs
1
F@=ef@ = (%)




Hypergeometrics and the Cost Structure of Quadtrees

@ Under such transformation, the diff. equation satisfied by
f*(z) is particularly simple and solvable in terms of generalized
hypergeometric functions, allowing explicit computation of the
expected values

£ —tr
=l Y Pt

2<5<n

n d
[[n]]!:]‘[<1—jd>, 2 =1

J=3

fn = Z (Z) (_1)kf;ck: t:» = Z (Z) (_1)ktk;

k



Hypergeometrics and the Cost Structure of Quadtrees

@ The asymptotic behavior of f, can be estimated through the
Mellin-Lindeldf integral representation of f*(z); collecting the
residues o in a strip a < R(s) < ny

™

) +or)

sinms

F2) = 3 (~1)r¢(n)z™ = — 3" Res (¢(s)zs

n>ng

zZ — 00

@ Or via singularity analysis of the expansion of f(z) around
z = 1; for additive costs, f(z) can be explicitly expressed in
terms of hypergeometric functions



Epilogue

This survey spans several papers (10-13) published over ~15 years,
from 1983 to 1997, an exciting period for AofA

@ Singularity analysis

@ Techniques to prove limit distributions + AofA proves the
normal distribution is normal :)

@ Birth of AofA: Dagstuhl 1993

During that period Philippe made many fundamental
methodological contributions, but he always kept interest and made
significant contributions on applications, harmonically blending
theory and practice. Philippe gave many examples on how
applications (for instance, relevant parameters in different families
of search trees) could be analyzed with scientific rigor and
unprecedented precision and insight, and developed beautiful but
purposeful mathematical techniques in the way
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