

Philippe Flajolet and Dynamical Combinatorics.

Brigitte VALLÉE GREYC (CNRS and Université de Caen)

Conference in the memory of Philippe Philippe Flajolet and Analytical Combinatorics

Paris, December 2011.

A long joint scientific story, which lasted twenty years ...

A long joint scientific story, which lasted twenty years ...

A long joint scientific story, which lasted twenty years ...

... with four main steps

- Beginnings : analysis of the Gauss Algorithm (1990–1995)
- Developments (1995-1998)
- Foundation of dynamical combinatorics (1998-2006)
- Towards a realistic analysis of algorithms? (2008-2011)

Philippe always asked the "good" question to the "good" person.

Philippe always asked the "good" question to the "good" person.

- I have studied the Gauss Algorithm in my PhD Thesis (1986) (from the worst-case point of view)

Philippe always asked the "good" question to the "good" person.

- I have studied the Gauss Algorithm in my PhD Thesis (1986) (from the worst-case point of view)
- In 1990, I decided to work in Analysis of Algorithms.

Philippe always asked the "good" question to the "good" person.

- I have studied the Gauss Algorithm in my PhD Thesis (1986) (from the worst-case point of view)
- In 1990, I decided to work in Analysis of Algorithms.

Then, Philippe proposed to me

to study the average-case analysis of the Gauss Algorithm

Philippe always asked the "good" question to the "good" person.

- I have studied the Gauss Algorithm in my PhD Thesis (1986) (from the worst-case point of view)
- In 1990, I decided to work in Analysis of Algorithms.

Then, Philippe proposed to me

to study the average-case analysis of the Gauss Algorithm

Two steps:

- A first paper [Flajolet, V. 1990]: Mean number of iterations

Philippe always asked the "good" question to the "good" person.

- I have studied the Gauss Algorithm in my PhD Thesis (1986) (from the worst-case point of view)
- In 1990, I decided to work in Analysis of Algorithms.

Then, Philippe proposed to me

to study the average-case analysis of the Gauss Algorithm

Two steps:

- A first paper [Flajolet, V. 1990]: Mean number of iterations
- Then two papers [Daudé, Flajolet, V., 1994, 1997] : Distribution of the number of iterations

Philippe always asked the "good" question to the "good" person.

- I have studied the Gauss Algorithm in my PhD Thesis (1986) (from the worst-case point of view)
- In 1990, I decided to work in Analysis of Algorithms.

Then, Philippe proposed to me

to study the average-case analysis of the Gauss Algorithm

Two steps:

- A first paper [Flajolet, V. 1990]: Mean number of iterations
- Then two papers [Daudé, Flajolet, V., 1994, 1997] : Distribution of the number of iterations

The Gauss algorithm

A lattice of \mathbb{R}^2

= a discrete additive subgroup of \mathbb{R}^2

 $\mathcal{L} := \{ w \in \mathbb{R}^2; \ w = xu + yv, \ x, y \in \mathbb{Z} \}$

A lattice with three possible bases (u, v)

The Gauss algorithm

- A lattice of \mathbb{R}^2
- = a discrete additive subgroup of \mathbb{R}^2

$$\mathcal{L} := \{ w \in \mathbb{R}^2; \ w = xu + yv, \ x, y \in \mathbb{Z} \}$$

A lattice with three possible bases (u, v)

In two dimensions, an algorithm due to Gauss finds, from any basis of a lattice \mathcal{L} , a minimal basis of \mathcal{L}

The Gauss algorithm is a main tool for finding short bases in any dimensions.

The Gauss algorithm

- A lattice of \mathbb{R}^2
- = a discrete additive subgroup of \mathbb{R}^2

$$\mathcal{L} := \{ w \in \mathbb{R}^2; \ w = xu + yv, \ x, y \in \mathbb{Z} \}$$

A lattice with three possible bases (u, v)

In two dimensions, an algorithm due to Gauss finds, from any basis of a lattice \mathcal{L} , a minimal basis of \mathcal{L}

The Gauss algorithm is a main tool for finding short bases in any dimensions.

The Gauss alg. performs integer translations seen as "vectorial" divisions

$$u = mv + r$$
 with $m = \left\lfloor \frac{u \cdot v}{|v|^2}
ight
floor,$

Here m = 2

$$(u,v) \in \mathbb{C}^2$$
, with $u \neq 0 \longrightarrow z := \frac{v}{u} = \frac{(u \cdot v)}{|u|^2} + i \frac{\det(u,v)}{|u|^2}$.

Up to similarity, the lattice $\mathcal{L}(u, v)$ becomes $\mathcal{L}(1, z) =: L(z)$.

$$(u,v) \in \mathbb{C}^2$$
, with $u \neq 0 \longrightarrow z := \frac{v}{u} = \frac{(u \cdot v)}{|u|^2} + i \frac{\det(u,v)}{|u|^2}$.

Up to similarity, the lattice $\mathcal{L}(u,v)$ becomes $\mathcal{L}(1,z)=:L(z).$

$$(u,v) \in \mathbb{C}^2$$
, with $u \neq 0 \longrightarrow z := \frac{v}{u} = \frac{(u \cdot v)}{|u|^2} + i \frac{\det(u,v)}{|u|^2}$

Up to similarity, the lattice $\mathcal{L}(u,v)$ becomes $\mathcal{L}(1,z)=:L(z).$

Euclid's algorithm	Gauss' algorithm
Division between real numbers	Division between complex vectors
$v = mu + r$ with $m = \left\lfloor \frac{u}{v} \right\rfloor$	$v = mu + r$ with $m = \left\lfloor \Re \left(\frac{u}{v} \right) \right\rfloor$

$$(u,v) \in \mathbb{C}^2$$
, with $u \neq 0 \longrightarrow z := \frac{v}{u} = \frac{(u \cdot v)}{|u|^2} + i \frac{\det(u,v)}{|u|^2}$.

Up to similarity, the lattice $\mathcal{L}(u,v)$ becomes $\mathcal{L}(1,z)=:L(z).$

Gauss' algorithm
Division between complex vectors
$v = mu + r$ with $m = \left\lfloor \Re \left(\frac{u}{v} \right) \right\rfloor$
Division + exchange $(v, u) \rightarrow (r, v)$
"read" on $z = v/u$
$U(z) = \frac{1}{z} - \left\lfloor \Re \left(\frac{1}{z} \right) \right\rfloor$

$$(u,v) \in \mathbb{C}^2$$
, with $u \neq 0 \longrightarrow z := \frac{v}{u} = \frac{(u \cdot v)}{|u|^2} + i \frac{\det(u,v)}{|u|^2}$.

Up to similarity, the lattice $\mathcal{L}(u,v)$ becomes $\mathcal{L}(1,z)=:L(z).$

Euclid's algorithm	Gauss' algorithm
Division between real numbers	Division between complex vectors
$v = mu + r$ with $m = \left\lfloor \frac{u}{v} ight floor$	$v = mu + r$ with $m = \left\lfloor \Re \left(\frac{u}{v} \right) \right\rfloor$
Division + exchange $(v, u) \rightarrow (r, v)$	Division + exchange $(v, u) \rightarrow (r, v)$
"read" on $x = v/u$	"read" on $z = v/u$
$U(x) = \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor$	$U(z) = \frac{1}{z} - \left\lfloor \Re\left(\frac{1}{z}\right) \right\rfloor$
Stopping condition: $x = 0$	Stopping condition: $z \in \mathcal{F}$
	$\mathcal{F} := \{ z; \ z \ge 1, \ \Re z \le 1/2 \}$

 \mathcal{D} is the disk of diameter [0,1], and $U(z) = \frac{1}{z} - \left\lfloor \Re\left(\frac{1}{z}\right) \right\rfloor$ On an input $z \in \mathcal{D}$, the CoreGauss Alg performs z := U(z), until $z \notin \mathcal{D}$.

It uses at each step the set of (inverse) branches of mapping \boldsymbol{U}

 $\mathcal{H} := \{ z \mapsto \frac{1}{m+z}; \ m \ge 1 \},$ the same set as the Euclid Alg.

The domain $[R \ge k+1]$ is a union of disks : $[R \ge k+1] = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D})$

 \mathcal{D} is the disk of diameter [0, 1], and $U(z) = \frac{1}{z} - \left\lfloor \Re\left(\frac{1}{z}\right) \right\rfloor$ On an input $z \in \mathcal{D}$, the CoreGauss Alg performs z := U(z), until $z \notin \mathcal{D}$. It uses at each step the set of (inverse) branches of mapping U

 $\mathcal{H} := \{ z \mapsto rac{1}{m+z}; \ m \geq 1 \},$ the same set as the Euclid Alg.

The domain $[R \ge k+1]$ is a union of disks : $[R \ge k+1] = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D})$

Inside disk D, the domains [R = k]alternatively in black and white \mathcal{D} is the disk of diameter [0,1], and $U(z) = \frac{1}{z} - \left\lfloor \Re\left(\frac{1}{z}\right) \right\rfloor$ On an input $z \in \mathcal{D}$, the CoreGauss Alg performs z := U(z), until $z \notin \mathcal{D}$. It uses at each step the set of (inverse) branches of mapping U

 $\mathcal{H} := \{ z \mapsto rac{1}{m+z}; \ m \geq 1 \},$ the same set as the Euclid Alg.

The domain $[R \ge k+1]$ is a union of disks : $[R \ge k+1] = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D})$

The disks $h(\mathcal{D})$ are the "fundamental" disks

 $\mathbb{E}[R] = \sum_{h \in \mathcal{H}^{\star}} [h(0) - h(1)]^2,$

 \mathcal{D} is the disk of diameter [0, 1], and $U(z) = \frac{1}{z} - \left\lfloor \Re\left(\frac{1}{z}\right) \right\rfloor$ On an input $z \in \mathcal{D}$, the CoreGauss Alg performs z := U(z), until $z \notin \mathcal{D}$. It uses at each step the set of (inverse) branches of mapping U

 $\mathcal{H} := \{ z \mapsto rac{1}{m+z}; \ m \geq 1 \},$ the same set as the Euclid Alg.

The domain $[R \ge k+1]$ is a union of disks : $[R \ge k+1] = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D})$

Inside disk D, the domains [R = k]alternatively in black and white

The disks $h(\mathcal{D})$ are the "fundamental" disks

 $\mathbb{E}[R] = \sum_{h \in \mathcal{H}^{\star}} [h(0) - h(1)]^2,$

A simple characterization of \mathcal{H}^{\star} leads to

 $\mathbb{E}[R] = \frac{3}{4} + \frac{2}{\zeta(4)} \sum_{d \ge 1} \frac{1}{d^2} \sum_{d < c \le 2d} \frac{1}{d^2} = 1.351094...$

An alternative expression involves $\zeta(3) \text{ and the tetralogarithm Li}_{4}... \text{ [FV. FOCS, 1990]}$

 \mathcal{D} is the disk of diameter [0, 1], and $U(z) = \frac{1}{z} - \left\lfloor \Re\left(\frac{1}{z}\right) \right\rfloor$ On an input $z \in \mathcal{D}$, the CoreGauss Alg performs z := U(z), until $z \notin \mathcal{D}$. It uses at each step the set of (inverse) branches of mapping U

 $\mathcal{H} := \{ z \mapsto rac{1}{m+z}; \ m \geq 1 \},$ the same set as the Euclid Alg.

The domain $[R \ge k+1]$ is a union of disks : $[R \ge k+1] = \bigcup_{h \in \mathcal{H}^k} h(\mathcal{D})$

Inside disk D, the domains [R = k]alternatively in black and white

The disks $h(\mathcal{D})$ are the "fundamental" disks $\mathbb{E}[R] = \sum [h(0) - h(1)]^2,$ A simple characterization of \mathcal{H}^* leads to $\mathbb{E}[R] = \frac{3}{4} + \frac{2}{\zeta(4)} \sum_{d \ge 1} \frac{1}{d^2} \sum_{d \le a \le 2d} \frac{1}{d^2} = 1.351094...$ An alternative expression involves $\zeta(3)$ and the tetralogarithm Li₄... [FV. FOCS, 1990]

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

But how to characterize \mathcal{H}^k ? More difficult! ...

The domains [R = k]alternatively in black and white

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

But how to characterize \mathcal{H}^k ? More difficult! ...

Hervé Daudé's PhD

Then Hensley's paper

Mayer's Chapter in the Green Book

The domains [R = k]alternatively in black and white

The domains
$$[R = k]$$

alternatively
in black and white

 $\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$

But how to characterize \mathcal{H}^k ? More difficult! ...

Hervé Daudé's PhD

Then Hensley's paper

Mayer's Chapter in the Green Book

But how to characterize \mathcal{H}^k ? More difficult! ...

Hervé Daudé's PhD

Then Hensley's paper

Mayer's Chapter in the Green Book

But how to characterize \mathcal{H}^k ? More difficult! ...

Hervé Daudé's PhD

Then Hensley's paper

Mayer's Chapter in the Green Book

The Euclidean dynamical system (EDS)

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

The Ruelle-Mayer operator \mathbf{G}_s , defined as

$$\mathbf{G}_{s}[f](x) := \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} f \circ h(x)$$

is the transfer operator related to the EDS. It generates (with its k-th iterate) the subset \mathcal{H}^k ,

 $\mathbf{G}_{s}^{k}[f](x) := \sum_{h \in \mathcal{H}^{k}} |h'(x)|^{s} f \circ h(x)$

The Euclidean dynamical system (EDS)

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

The Ruelle-Mayer operator \mathbf{G}_s , defined as

$$\mathbf{G}_{s}[f](x) := \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} f \circ h(x)$$

is the transfer operator related to the EDS. It generates (with its k-th iterate) the subset \mathcal{H}^k ,

$$\mathbf{G}^k_s[f](x) := \sum_{h \in \mathcal{H}^k} |h'(x)|^s \ f \circ h(x)$$

and

$$\Pr[R \ge k+1] = \mathbf{G}_{2}^{k} \left[\frac{1}{(1+x)^{2}} \right] (0)$$

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

The Ruelle-Mayer operator \mathbf{G}_s , defined as

$$\mathbf{G}_{s}[f](x) := \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} f \circ h(x)$$

is the transfer operator related to the EDS. It generates (with its *k*-th iterate) the subset \mathcal{H}^k ,

$$\begin{split} \mathbf{G}_{s}^{k}[f](x) &:= \sum_{h \in \mathcal{H}^{k}} |h'(x)|^{s} \ f \circ h(x) \\ \text{and} \qquad \Pr[R \geq k+1] = \mathbf{G}_{2}^{k} \left[\frac{1}{(1+x)^{2}} \right] (0) \end{split}$$

Spectral properties of \mathbf{G}_2 on a convenient functional space prove :

The Euclidean dynamical system (EDS)

 $\Pr[R \ge k+1] = \sum |h(0) - h(1)|^2$ $h \in \mathcal{H}^k$

The Ruelle-Mayer operator \mathbf{G}_s , defined as

$$\mathbf{G}_{s}[f](x) := \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} f \circ h(x)$$

is the transfer operator related to the EDS. It generates (with its k-th iterate) the subset \mathcal{H}^k ,

$$\begin{aligned} \mathbf{G}_s^k[f](x) &:= \sum_{h \in \mathcal{H}^k} |h'(x)|^s \ f \circ h(x) \\ \text{and} \qquad \Pr[R \ge k+1] = \mathbf{G}_2^k \left[\frac{1}{(1+x)^2} \right] (0) \end{aligned}$$

Spectral properties of G_2 on a convenient functional space prove :

 $\Pr[R \ge k+1] \sim C \ \lambda(2)^k$ with $\lambda(2) :=$ the dominant eigenvalue of \mathbf{G}_2

The Euclidean dynamical system (EDS)

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

The Ruelle-Mayer operator \mathbf{G}_s , defined as

$$\mathbf{G}_{s}[f](x) := \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} f \circ h(x)$$

is the transfer operator related to the EDS. It generates (with its *k*-th iterate) the subset \mathcal{H}^k ,

$$\begin{split} \mathbf{G}_{s}^{k}[f](x) &:= \sum_{h \in \mathcal{H}^{k}} |h'(x)|^{s} \ f \circ h(x) \\ \text{and} \qquad \Pr[R \geq k+1] = \mathbf{G}_{2}^{k} \left[\frac{1}{(1+x)^{2}} \right] (\mathbf{0}) \end{split}$$

Spectral properties of \mathbf{G}_2 on a convenient functional space prove :

 $\Pr[R \ge k+1] \sim C \ \lambda(2)^k$ with $\lambda(2) :=$ the dominant eigenvalue of \mathbf{G}_2

We "discovered" $\lambda(2)$ in 1994,

The Euclidean dynamical system (EDS)

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

The Ruelle-Mayer operator \mathbf{G}_s , defined as

$$\mathbf{G}_{s}[f](x) := \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} f \circ h(x)$$

is the transfer operator related to the EDS. It generates (with its *k*-th iterate) the subset \mathcal{H}^k ,

$$\begin{aligned} \mathbf{G}_{s}^{k}[f](x) &:= \sum_{h \in \mathcal{H}^{k}} \left| h'(x) \right|^{s} f \circ h(x) \\ \text{and} \qquad \Pr[R \ge k+1] = \mathbf{G}_{2}^{k} \left[\frac{1}{(1+x)^{2}} \right] (0) \end{aligned}$$

Spectral properties of \mathbf{G}_2 on a convenient functional space prove :

 $\Pr[R \ge k+1] \sim C \ \lambda(2)^k$ with $\lambda(2) :=$ the dominant eigenvalue of \mathbf{G}_2

We "discovered" $\lambda(2)$ in 1994, its value is $\lambda(2) \sim 0.1994...$

$$\Pr[R \ge k+1] = \sum_{h \in \mathcal{H}^k} |h(0) - h(1)|^2$$

The Ruelle-Mayer operator \mathbf{G}_s , defined as

$$\mathbf{G}_{s}[f](x) := \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} f \circ h(x)$$

is the transfer operator related to the EDS. It generates (with its *k*-th iterate) the subset \mathcal{H}^k ,

$$\begin{split} \mathbf{G}_{s}^{k}[f](x) &:= \sum_{h \in \mathcal{H}^{k}} |h'(x)|^{s} \ f \circ h(x) \\ \text{and} \qquad \Pr[R \geq k+1] = \mathbf{G}_{2}^{k} \left[\frac{1}{(1+x)^{2}} \right] (0) \end{split}$$

Spectral properties of \mathbf{G}_2 on a convenient functional space prove :

 $\Pr[R \ge k+1] \sim C \ \lambda(2)^k$ with $\lambda(2) :=$ the dominant eigenvalue of \mathbf{G}_2

We "discovered" $\lambda(2)$ in 1994, its value is $\lambda(2) \sim 0.1994...$ Philippe wished to call it the Vallée constant... He described 1994 as "the year of the constant $\lambda(2)$ "...

II - Developments.

How to use the Ruelle-Mayer operator in (almost) any Euclidean problem.

- Any problem related to continued fraction expansions (continuous world, real variable)
- Any problem related to the Euclid Algorithm (discrete world, rational variable)

Continued fraction expansion of x

Iterates \mathbf{G}_{s}^{k} of the operator \mathbf{G}_{s} generate – the truncated CFE's at depth k,

Iterates \mathbf{G}_{s}^{k} of the operator \mathbf{G}_{s} generate

- the truncated CFE's at depth k,
- the fundamental intervals

 $h(\mathcal{I}) := [h(0), h(1)]$ with $h \in \mathcal{H}^k$.

Iterates \mathbf{G}_s^k of the operator \mathbf{G}_s generate – the truncated CFE's at depth k, – the fundamental intervals $h(\mathcal{I}) := [h(0), h(1)]$ with $h \in \mathcal{H}^k$. – the best rational approximation of a real x, namely the rational $h(0) = \frac{p_k}{q_k}(x)$

Iterates \mathbf{G}_s^k of the operator \mathbf{G}_s generate – the truncated CFE's at depth k, – the fundamental intervals $h(\mathcal{I}) := [h(0), h(1)]$ with $h \in \mathcal{H}^k$. – the best rational approximation of a real x, namely the rational $h(0) = \frac{p_k}{q_k}(x)$

Distance $\delta_k(x)$ between the real x and its best approximation $p_k/q_k(x)$ $\mathbb{E}[\delta_k]$ expressed with $\mathbf{G}_2^k \implies \mathbb{E}[\delta_k] \sim C \ \lambda(2)^k$

Iterates \mathbf{G}_s^k of the operator \mathbf{G}_s generate – the truncated CFE's at depth k, – the fundamental intervals $h(\mathcal{I}) := [h(0), h(1)]$ with $h \in \mathcal{H}^k$. – the best rational approximation of a real x, namely the rational $h(0) = \frac{p_k}{q_k}(x)$

Distance $\delta_k(x)$ between the real x and its best approximation $p_k/q_k(x)$ $\mathbb{E}[\delta_k]$ expressed with $\mathbf{G}_2^k \implies \mathbb{E}[\delta_k] \sim C \ \lambda(2)^k$

Behaviour of $\log q_k(x)$:

Distance $\delta_k(x)$ between the real x and its best approximation $p_k/q_k(x)$ $\mathbb{E}[\delta_k]$ expressed with $\mathbf{G}_2^k \implies \mathbb{E}[\delta_k] \sim C \ \lambda(2)^k$ Behaviour of $\log q_k(x) : \mathbb{E}[q_k^{2s}]$ expressed with \mathbf{G}_{1-s}^k Then, [spectral dominant properties+ quasi-power theorem] \implies an asymptotic normal law for $\log q_k$

Distance $\delta_k(x)$ between the real x and its best approximation $p_k/q_k(x)$ $\mathbb{E}[\delta_k]$ expressed with $\mathbf{G}_2^k \implies \mathbb{E}[\delta_k] \sim C \ \lambda(2)^k$ Behaviour of $\log q_k(x) : \mathbb{E}[q_k^{2s}]$ expressed with \mathbf{G}_{1-s}^k Then, [spectral dominant properties+ quasi-power theorem] \implies an asymptotic normal law for $\log q_k$ $\mathbb{E}[\log q_k] \sim k |\Lambda'(1)|, \ \mathbb{V}[\log q_k] \sim k \Lambda''(1)$ with $\Lambda(s) := \log \lambda(s),$ $\Lambda'(1)$ is the entropy, and $\Lambda''(1)$ is the Hensley constant.

Comparison of two real numbers:

- related to the sign of the determinant,
- and the Hakmem algorithm.

The Hakmem Alg. and the Gauss Alg: the same geometry.

 $\Pr[C \ge k+1] \sim D\lambda(2)^k$

Comparison of two real numbers:

- related to the sign of the determinant,
- and the Hakmem algorithm.

The Hakmem Alg. and the Gauss Alg: the same geometry.

 $\Pr[C \ge k+1] \sim D\lambda(2)^k$

Comparison of two real numbers:

- related to the sign of the determinant,
- and the Hakmem algorithm.

The Hakmem Alg. and the Gauss Alg: the same geometry.

 $\Pr[C \ge k+1] \sim D\lambda(2)^k$

Comparison of n real numbers via the trie built on their continued fraction expansions [J. Clément, Master Thesis, 98]

Comparison of two real numbers:

- related to the sign of the determinant,
- and the Hakmem algorithm.

The Hakmem Alg. and the Gauss Alg: the same geometry.

 $\Pr[C \ge k+1] \sim D\lambda(2)^k$

Comparison of n real numbers via the trie built on their continued fraction expansions [J. Clément, Master Thesis, 98]

Comparison of two real numbers:

- related to the sign of the determinant,
- and the Hakmem algorithm.

The Hakmem Alg. and the Gauss Alg: the same geometry.

 $\Pr[C \ge k+1] \sim D\lambda(2)^k$

Comparison of n real numbers via the trie built on their continued fraction expansions [J. Clément, Master Thesis, 98]

Typical depth D_n , Height H_n

$$\mathbb{E}[D_n] \sim \frac{1}{|\lambda'(1)|} \log n$$

$$\mathbb{E}[H_n] \sim \frac{1}{|\log \lambda(2)|} \log n$$

Euclidean problems – Rational case. $CFE(u/v) \sim \text{Euclid}(u, v)$ Study of the number of iterations P of the Euclid Algorithm.
$$\label{eq:constraint} \begin{split} & \mathsf{Euclidean\ problems-Rational\ case}. \qquad CFE(u/v)\sim \mathsf{Euclid}(u,v) \\ & \mathsf{Study\ of\ the\ number\ of\ iterations\ }P\ of\ the\ \mathsf{Euclid\ Algorithm}. \end{split}$$

For any integer pair of $\Omega := \{(u, v); u < v, u, v \text{ coprime}\}$

$$\exists k, \exists h \in \mathcal{H}^k, \frac{u}{v} = h(0), \frac{1}{v^2} = |h'(0)|, P(u,v) = k.$$

Euclidean problems – Rational case. $CFE(u/v) \sim \text{Euclid}(u, v)$ Study of the number of iterations P of the Euclid Algorithm.

For any integer pair of $\Omega := \{(u, v); u < v, u, v \text{ coprime}\}$

$$\exists k, \quad \exists h \in \mathcal{H}^k, \quad \frac{u}{v} = h(0), \quad \frac{1}{v^2} = |h'(0)|, \quad P(u,v) = k.$$

Main idea: we introduce a generating function S(s) of Dirichlet type and we relate it to the Ruelle-Mayer operator G_s :

$$S(s) := \sum_{(u,v)\in\Omega} \frac{P(u,v)}{v^{2s}} = \sum_{k\geq 1} k \sum_{h\in\mathcal{H}^k} |h'(0)|^s = \sum_{k\geq 1} k \mathbf{G}_s^k [1](0) = \mathbf{G}_s \circ (I - \mathbf{G}_s)^{-2} [1]$$

Euclidean problems – Rational case. $CFE(u/v) \sim \text{Euclid}(u, v)$ Study of the number of iterations P of the Euclid Algorithm.

For any integer pair of $\Omega := \{(u, v); u < v, u, v \text{ coprime}\}$

$$\exists k, \quad \exists h \in \mathcal{H}^k, \quad \frac{u}{v} = h(0), \quad \frac{1}{v^2} = |h'(0)|, \quad P(u,v) = k.$$

Main idea: we introduce a generating function S(s) of Dirichlet type and we relate it to the Ruelle-Mayer operator G_s :

$$S(s) := \sum_{(u,v)\in\Omega} \frac{P(u,v)}{v^{2s}} = \sum_{k\geq 1} k \sum_{h\in\mathcal{H}^k} |h'(0)|^s = \sum_{k\geq 1} k \mathbf{G}_s^k [1](0) = \mathbf{G}_s \circ (I - \mathbf{G}_s)^{-2} [1]$$

Two properties of \mathbf{G}_s (on a convenient functional space)

– The map $s \mapsto (I - \mathbf{G}_s)^{-1}$ is analytic on $\Re s \ge 1; s \ne 1$.

– A simple pole at s = 1

 \implies Possible extraction of coefficients with a Tauberian Theorem

 \implies A short proof of the estimate $\mathbb{E}[P_N] \sim \frac{2}{|\lambda|/1}$

$$\mathbb{E}[P_N] \sim \frac{2}{|\lambda'(1)|} \log N = \frac{12\log 2}{\pi^2} \log N$$

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator \mathbf{G}_s^k generates

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator \mathbf{G}_{s}^{k} generates

– the fundamental intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator \mathbf{G}_{s}^{k} generates

- the fundamental intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$
- the fundamental probabilities $p_{w}\text{, for }\left|w\right|=k$

 $p_w :=$ the probability that CFE(x) begins with the sequence w

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator \mathbf{G}_{s}^{k} generates

- the fundamental intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$
- the fundamental probabilities $p_{\boldsymbol{w}},$ for $|\boldsymbol{w}|=k$

 $p_w :=$ the probability that CFE(x) begins with the sequence w

– the rationals u/v of depth k via their denominators vas the branches are LFT's : $u/v = h(0) \Longrightarrow 1/v^2 = |h'(0)|$

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator \mathbf{G}_{s}^{k} generates

- the fundamental intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$
- the fundamental probabilities $p_{\boldsymbol{w}},$ for $|\boldsymbol{w}|=k$

 $p_w :=$ the probability that CFE(x) begins with the sequence w

– the rationals u/v of depth k via their denominators vas the branches are LFT's : $u/v = h(0) \Longrightarrow 1/v^2 = |h'(0)|$

The role of \mathbf{G}_s is central

because it is the transfer operator of the underlying dynamical system.

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator \mathbf{G}_{s}^{k} generates

- the fundamental intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$
- the fundamental probabilities $p_{\boldsymbol{w}},$ for $|\boldsymbol{w}|=k$

 $p_w :=$ the probability that CFE(x) begins with the sequence w

- the rationals u/v of depth k via their denominators vas the branches are LFT's : $u/v = h(0) \Longrightarrow 1/v^2 = |h'(0)|$

The role of \mathbf{G}_s is central

because it is the transfer operator of the underlying dynamical system.

We wished to extend this use of transfer operators to other contexts

 Information theory: any dynamical system viewed as a processus to produce symbols

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator \mathbf{G}_{s}^{k} generates

- the fundamental intervals $h(\mathcal{I})$ for $h\in\mathcal{H}^k$
- the fundamental probabilities $p_{\boldsymbol{w}},$ for $|\boldsymbol{w}|=k$

 $p_w :=$ the probability that CFE(x) begins with the sequence w

- the rationals u/v of depth k via their denominators vas the branches are LFT's : $u/v = h(0) \Longrightarrow 1/v^2 = |h'(0)|$

The role of \mathbf{G}_s is central

because it is the transfer operator of the underlying dynamical system.

We wished to extend this use of transfer operators to other contexts

- Information theory: any dynamical system
 viewed as a processus to produce symbols
- Euclidean context: any dynamical system underlying a Euclid alg whose branches are LFT's.

- I mostly continued with other collaborators.
- He had a strong influence on my works
- I had very regular discussions with him.

- I mostly continued with other collaborators.
- He had a strong influence on my works
- I had very regular discussions with him.
- A typical conversation (by phone, usually at the end of the afternoon)

- I mostly continued with other collaborators.
- He had a strong influence on my works
- I had very regular discussions with him.

A typical conversation (by phone, usually at the end of the afternoon)

- I mostly continued with other collaborators.
- He had a strong influence on my works
- I had very regular discussions with him.

A typical conversation (by phone, usually at the end of the afternoon)

- P: On which subject have you worked today?
- B: [...] Do you think this question interesting?

The answer was often "yes", but not always "yes"...

- I mostly continued with other collaborators.
- He had a strong influence on my works
- I had very regular discussions with him.

A typical conversation (by phone, usually at the end of the afternoon)

- P: On which subject have you worked today?
- B: [...] Do you think this question interesting?

The answer was often "yes", but not always "yes"...

- B: I obtain this formula [the formula is spelled]. Do you think it is possible to deal with it?
- P: The x, do you put it on the numerator or in the denominator? B: [....]

- I mostly continued with other collaborators.
- He had a strong influence on my works
- I had very regular discussions with him.

A typical conversation (by phone, usually at the end of the afternoon)

- P: On which subject have you worked today?
- B: [...] Do you think this question interesting?

The answer was often "yes", but not always "yes"...

B: I obtain this formula [the formula is spelled]. Do you think it is possible to deal with it?

P: The x, do you put it on the numerator or in the denominator? B: [....]

- P: I don't know for this formula... But if you have another one ... [the formula is spelled], it would be easier...
- B: The i, is it in the exponent?

Dynamical Combinatorics = Extension of Analytical Combinatorics (Modified)transfer operators viewed as Generating Operators

In Period II, we studied the Euclid dynamical system, with its transfer operator

 $\mathbf{G}_{s}[f](x) = \sum_{h \in \mathcal{H}} |h'(x)|^{s} f \circ h(x)$

Dynamical Combinatorics = Extension of Analytical Combinatorics (Modified)transfer operators viewed as Generating Operators

In Period II, we studied the Euclid dynamical system, with its transfer operator

$$\mathbf{G}_{s}[f](x) = \sum_{h \in \mathcal{H}} |h'(x)|^{s} f \circ h(x)$$

In Period III, extension to any weighted dynamical system with its set \mathcal{H} of branches weighted by some cost c. It is useful to consider two points x and y,

$$\mathbf{H}_{s,w}[F](x,y) := \sum_{h \in \mathcal{H}} w^{c(h)} \left| \frac{h(x) - h(y)}{x - y} \right|^s F(h(x), h(y))$$

 \boldsymbol{s} marks the input size, and \boldsymbol{w} marks the cost \boldsymbol{c}

The secant $\left| \frac{h(x) - h(y)}{x - y} \right|$ replaces the tangent |h'(x)|

$$\mathbf{H}_{s,w}[F](x,y) := \sum_{h \in \mathcal{H}} w^{c(h)} \left| \frac{h(x) - h(y)}{x - y} \right|^s F(h(x), h(y))$$

$$\mathbf{H}_{s,w}[F](x,y) := \sum_{h \in \mathcal{H}} w^{c(h)} \left| \frac{h(x) - h(y)}{x - y} \right|^s F(h(x), h(y))$$

Very often, generating functions involve the quasi-inverse $(I - \mathbf{H}_{s,w})^{-1}$

$$\mathbf{H}_{s,w}[F](x,y) := \sum_{h \in \mathcal{H}} w^{c(h)} \left| \frac{h(x) - h(y)}{x - y} \right|^s F(h(x), h(y))$$

Very often, generating functions involve the quasi-inverse $(I - \mathbf{H}_{s,w})^{-1}$

Three main steps

$$\mathbf{H}_{s,w}[F](x,y) := \sum_{h \in \mathcal{H}} w^{c(h)} \left| \frac{h(x) - h(y)}{x - y} \right|^s F(h(x), h(y))$$

Very often, generating functions involve the quasi-inverse $(I - \mathbf{H}_{s,w})^{-1}$

Three main steps

- Determine

- the good weighted dynamical system
- and the related transfer operator adapted to the problem

$$\mathbf{H}_{s,w}[F](x,y) := \sum_{h \in \mathcal{H}} w^{c(h)} \left| \frac{h(x) - h(y)}{x - y} \right|^s F(h(x), h(y))$$

Very often, generating functions involve the quasi-inverse $(I - \mathbf{H}_{s,w})^{-1}$

Three main steps

- Determine

- the good weighted dynamical system
- and the related transfer operator adapted to the problem

- Translate the geometric properties of the weighted dynamical system into spectral properties of $\mathbf{H}_{s,w}$, then into analytical properties of $(I - \mathbf{H}_{s,w})^{-1}$ (on a convenient functional space) [a functional analysis step]

$$\mathbf{H}_{s,w}[F](x,y) := \sum_{h \in \mathcal{H}} w^{c(h)} \left| \frac{h(x) - h(y)}{x - y} \right|^s F(h(x), h(y))$$

Very often, generating functions involve the quasi-inverse $(I - \mathbf{H}_{s,w})^{-1}$

Three main steps

- Determine

- the good weighted dynamical system
- and the related transfer operator adapted to the problem

- Translate the geometric properties of the weighted dynamical system into spectral properties of $\mathbf{H}_{s,w}$, then into analytical properties of $(I - \mathbf{H}_{s,w})^{-1}$ (on a convenient functional space) [a functional analysis step]

Translate these analytical properties into asymptotics of coefficients
[a "classical" step in Analytical Combinatorics]

Euclidean dynamics: study of (almost) any algorithm of Euclid type

The branches are always LFT's, but the dynamics may differ a lot.

Extensions of the methods of Period II in four directions

- to other types of Euclid Alg. the Binary Alg. - the Lyapounov tortoise and the dyadic hare.
- to other costs (for instance: bit complexity of Euclid Alg).
- to distributional analyses

with bivariate transfer operators

- to a precise comparison between Euclid and Gauss Alg.

In Information Theory, the main object is : [V. 2001]

the Dirichlet series of the source

$$\Lambda(s):=\sum_{w\in\Sigma^\star}p_w^s$$

[V. 2001]

$$p_{\boldsymbol{w}} :=$$
 the probability that a word begins with prefix \boldsymbol{w}

the Dirichlet series of the source

[V. 2001]

 $p_w :=$ the probability that a word begins with prefix w

A general dynamical source $\Lambda(s)$ closely related to $(I - \mathbf{H}_s)^{-1}$ where \mathbf{H}_s is the (secant) transfer operator of the dynamical system.

 $M(x) = (c, b, a, c \ldots)$

the Dirichlet series of the source

$$\Lambda(s) := \sum_{w \in \Sigma^{\star}} p_w^s$$

[V. 2001]

 $p_w :=$ the probability that a word begins with prefix w

A general dynamical source $\Lambda(s)$ closely related to $(I - \mathbf{H}_s)^{-1}$ where \mathbf{H}_s is the (secant) transfer operator of the dynamical system.


```
M(x) = (c, b, a, c \dots)
```

A memoryless source, with probabilities (p_i) $\Lambda(s) = \frac{1}{1 - \lambda(s)} \qquad \text{with} \quad \lambda(s) = \sum_{i=1}^r p_i^s$

the Dirichlet series of the source

$$\Lambda(s) := \sum_{w \in \Sigma^{\star}} p_w^s$$

[V. 2001]

 $p_w :=$ the probability that a word begins with prefix w

A general dynamical source $\Lambda(s)$ closely related to $(I - \mathbf{H}_s)^{-1}$ where \mathbf{H}_s is the (secant) transfer operator of the dynamical system.

A memoryless source, with probabilities (p_i) $\Lambda(s) = \frac{1}{1 - \lambda(s)} \quad \text{with} \quad \lambda(s) = \sum_{i=1}^r p_i^s$

A Markov chain, defined by

- the vector R of initial probabilities (r_i)
- and the transition matrix $P := (p_{i,j})$

 $\Lambda(s) = 1 + {}^{t}\mathbf{1}(I - P(s))^{-1}R(s)$ with $P(s) = (p_{i,j}^{s}), \quad R(s) = (r_{i}^{s}).$

Analysis of general tries

- All the possible node structures: array list or BST
- Words produced by a general (good) dynamical source.
- Possible infinite alphabet

Here, focus on the height and typical depth [2001]: Both means are of order $\log n$ [FV with J. Clément]

 $\mathbb{E}[D_n] \sim \frac{1}{|\lambda'(1)|} \log n \qquad \mathbb{E}[H_n] \sim \frac{1}{|\log \lambda(2)|} \log n$

Analysis of general tries

- All the possible node structures: array list or BST
- Words produced by a general (good) dynamical source.
- Possible infinite alphabet

Here, focus on the height and typical depth [2001]: Both means are of order $\log n$ [FV with J. Clément]

$$\mathbb{E}[D_n] \sim \frac{1}{|\lambda'(1)|} \log n \qquad \mathbb{E}[H_n] \sim \frac{1}{|\log \lambda(2)|} \log n$$

What about the remainder term for the typical depth? It depends on the shape of a "tameness" region $\mathcal{R} \subset \{\Re s \leq 1, s \neq 1\}$ where $\Lambda(s)$ is analytic and of polynomial growth.

Analysis of general tries

- All the possible node structures: array list or BST
- Words produced by a general (good) dynamical source.
- Possible infinite alphabet

Here, focus on the height and typical depth [2001]: Both means are of order $\log n$ [FV with J. Clément]

$$\mathbb{E}[D_n] \sim \frac{1}{|\lambda'(1)|} \log n \qquad \mathbb{E}[H_n] \sim \frac{1}{|\log \lambda(2)|} \log n$$

What about the remainder term for the typical depth? It depends on the shape of a "tameness" region $\mathcal{R} \subset \{\Re s \leq 1, s \neq 1\}$ where $\Lambda(s)$ is analytic and of polynomial growth.

Later, we study the tameness of a memoryless source, We relate the shape of an optimal tameness region with diophantine properties of ratios $\log p_i / \log p_j$.

[FV with M. Roux, 2010]

IV- Towards a "realistic" analysis of algorithms?

- Concept of a general source, completely defined by the set $p_w :=$ the probability that the word begins with w.

 \implies Parametrization by the unit interval $\mathcal I$

There exists a map $M : \mathcal{I} \to \Sigma^{\mathbb{N}}$, continuous, increasing, s.t each emitted word is (a.e uniquely) written as M(u) with $u \in \mathcal{I}$.

- Analysis of the basic algorithms (sorting and searching alg.) when

- the inputs are random words of a general source
- the cost of a comparison between words
 - = the number of symbols needed in a lexicographic comparison.

Distribution of the coincidence ${\cal C}$ = the length of the longest common prefix

$$\Pr[C \ge k+1] = \sum_{w \in \Sigma^k} p_w^2$$

a b a <u>b</u> b b... a b a <u>a</u> b a...

coincidence=3; #comparisons=4.

Realistic analysis of an algorithm using comparisons on keys.

Coincidence γ of the source ${\mathcal S}$

 $\gamma(u,t)$ is the coincidence between M(u) and M(t)

Density ϕ of the algorithm \mathcal{A} (using comparisons):

 $\phi(u,t)$:= the "mean" number of key comparisons between u and t when they are given to Alg. A after being inserted in a random sequence of \mathcal{I}^* .

We wished to build a general dictionary (and began to do it)

Source S ,		Mixed Dirichet series		The number S_n
its coincidence γ		arpi(s)		of symbol comp.
and	\Rightarrow	depends both	\Rightarrow	performed
Alg \mathcal{A} ,		on the source		by Alg ${\mathcal A}$
its density ϕ		and the alg.		on n words
$\implies: \qquad \mathbb{E}[S_n] = \sum_{k=2}^n (-1)^k \binom{n}{k} \varpi(k)$				

A general dictionary

We [= FV with Julien] have already determined the mixed series $\varpi(s)$ – for Tries [2001],

- for Binary Search Trees (or QuickSort) [with J.Fill, 2009]

$$\varpi_T(s) = s\Lambda(s), \qquad \varpi_B(s) = \frac{2\Lambda(s)}{s(s-1)}, \qquad \text{with} \quad \Lambda(s) = \sum_{w \in \Sigma^\star} p_w^s$$

A general dictionary

And now? Determine series $\varpi(s)$ in other contexts!

$\begin{array}{c|c} \text{Source } \mathcal{S}, \\ \text{its coincidence } \gamma \\ \text{and} \\ \text{Alg } \mathcal{A}, \\ \text{its density } \phi \end{array} \xrightarrow[]{} \begin{array}{c|c} \text{Mixed Dirichet series} \\ \varpi(s) \\ \text{of the source} \\ \text{and the alg.} \end{array} \xrightarrow[]{} \begin{array}{c|c} \text{The number } \mathcal{S}_n \\ \text{of symbol comp.} \\ \text{of symbol comp.} \\ \text{performed} \\ \text{by Alg } \mathcal{A} \\ \text{on } n \text{ words} \end{array}$

And now? Determine series $\varpi(s)$ in other contexts!

This autumn, we have begun to study Insertion Sort and Selection Sort [with Julien and Thu Hien Nguyen Thi, our PhD student]

And now? Determine series $\varpi(s)$ in other contexts!

This autumn, we have begun to study Insertion Sort and Selection Sort [with Julien and Thu Hien Nguyen Thi, our PhD student]

Philippe strongly wished to study digital search trees in this framework.

And now? Determine series $\varpi(s)$ in other contexts!

This autumn, we have begun to study Insertion Sort and Selection Sort [with Julien and Thu Hien Nguyen Thi, our PhD student]

Philippe strongly wished to study digital search trees in this framework. - We [FV] began to work on this subject on December 2010.

And now? Determine series $\varpi(s)$ in other contexts!

This autumn, we have begun to study Insertion Sort and Selection Sort [with Julien and Thu Hien Nguyen Thi, our PhD student]

Philippe strongly wished to study digital search trees in this framework.

- We [FV] began to work on this subject on December 2010.
- in February 2011, we have planned a co-direction of a PhD thesis.

And now? Determine series $\varpi(s)$ in other contexts!

This autumn, we have begun to study Insertion Sort and Selection Sort [with Julien and Thu Hien Nguyen Thi, our PhD student]

Philippe strongly wished to study digital search trees in this framework.

- We [FV] began to work on this subject on December 2010.
- in February 2011, we have planned a co-direction of a PhD thesis.
- The student Kanal Hun will arrive from Cambodgia in January 2012.

$\begin{array}{c|c} \text{Source } \mathcal{S}, \\ \text{its coincidence } \gamma \\ \text{and} \\ \text{Alg } \mathcal{A}, \\ \text{its density } \phi \end{array} \xrightarrow[]{} \begin{array}{c|c} \text{Mixed Dirichet series} \\ \varpi(s) \\ \text{depends both} \\ \text{on the source} \\ \text{and the alg.} \end{array} \xrightarrow[]{} \begin{array}{c|c} \text{The number } S_n \\ \text{of symbol comp.} \\ \text{performed} \\ \text{by Alg } \mathcal{A} \\ \text{on } n \text{ words} \end{array}$

And now? Determine series $\varpi(s)$ in other contexts!

This autumn, we have begun to study Insertion Sort and Selection Sort [with Julien and Thu Hien Nguyen Thi, our PhD student]

Philippe strongly wished to study digital search trees in this framework.

- We [FV] began to work on this subject on December 2010.
- in February 2011, we have planned a co-direction of a PhD thesis.
- The student Kanal Hun will arrive from Cambodgia in January 2012.

Philippe, we will continue this work. This would have been your strong wish.