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A long joint scientific story, which lasted twenty years ...

... with four main steps

– Beginnings : analysis of the Gauss Algorithm (1990–1995)

– Developments (1995–1998)

– Foundation of dynamical combinatorics (1998–2006)

– Towards a realistic analysis of algorithms? (2008–2011)
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I – Beginnings
Analysis of the Gauss Algorithm

Philippe always asked the “good” question to the “good” person.

– I have studied the Gauss Algorithm in my PhD Thesis (1986)
(from the worst–case point of view)

– In 1990, I decided to work in Analysis of Algorithms.

Then, Philippe proposed to me

to study the average–case analysis of the Gauss Algorithm

Two steps:

– A first paper [Flajolet, V. 1990]: Mean number of iterations

– Then two papers [Daudé, Flajolet, V., 1994, 1997] :

Distribution of the number of iterations
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The Gauss algorithm

A lattice of R2

= a discrete additive subgroup of R2

L := {w ∈ R2; w = xu+ yv, x, y ∈ Z}
A lattice with three possible bases (u, v)

In two dimensions, an algorithm due to Gauss finds,

from any basis of a lattice L, a minimal basis of L

The Gauss algorithm is a main tool for finding short bases in any dimensions.

The Gauss alg. performs integer translations

seen as “vectorial” divisions

u = mv + r with m =

⌊
u · v
|v|2

⌋
,

Here m = 2
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Our main idea: A projective point of view.

(u, v) ∈ C2, with u 6= 0 −→ z :=
v

u
=

(u · v)

|u|2
+ i

det(u, v)

|u|2
.

Up to similarity, the lattice L(u, v) becomes L(1, z) =: L(z).

The Gauss algorithm is an extension of the Euclid algorithm.

Euclid’s algorithm Gauss’ algorithm

Division between real numbers Division between complex vectors

v = mu+ r with m =
⌊u
v

⌋
v = mu+ r with m =

⌊
<
(u
v

)⌋
Division + exchange (v, u)→ (r, v) Division + exchange (v, u)→ (r, v)

“read” on x = v/u “read” on z = v/u

U(x) =
1

x
−
⌊

1

x

⌋
U(z) =

1

z
−
⌊
<
(

1

z

)⌋

Stopping condition: x = 0 Stopping condition: z ∈ F
F := {z; |z| ≥ 1, |<z| ≤ 1/2}
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D is the disk of diameter [0, 1], and U(z) =
1

z
−
⌊
<
(

1

z

)⌋
On an input z ∈ D, the CoreGauss Alg performs z := U(z), until z 6∈ D.

It uses at each step the set of (inverse) branches of mapping U

H := {z 7→ 1

m+ z
; m ≥ 1}, the same set as the Euclid Alg.

The domain [R ≥ k + 1] is a union of disks : [R ≥ k + 1] =
⋃

h∈Hk
h(D)

Inside disk D,

the domains [R = k]

alternatively

in black and white

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]



D is the disk of diameter [0, 1], and U(z) =
1

z
−
⌊
<
(

1

z

)⌋
On an input z ∈ D, the CoreGauss Alg performs z := U(z), until z 6∈ D.

It uses at each step the set of (inverse) branches of mapping U

H := {z 7→ 1

m+ z
; m ≥ 1}, the same set as the Euclid Alg.

The domain [R ≥ k + 1] is a union of disks : [R ≥ k + 1] =
⋃

h∈Hk
h(D)

Inside disk D,

the domains [R = k]

alternatively

in black and white

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]



D is the disk of diameter [0, 1], and U(z) =
1

z
−
⌊
<
(

1

z

)⌋
On an input z ∈ D, the CoreGauss Alg performs z := U(z), until z 6∈ D.

It uses at each step the set of (inverse) branches of mapping U

H := {z 7→ 1

m+ z
; m ≥ 1}, the same set as the Euclid Alg.

The domain [R ≥ k + 1] is a union of disks : [R ≥ k + 1] =
⋃

h∈Hk
h(D)

Inside disk D,

the domains [R = k]

alternatively

in black and white

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]



D is the disk of diameter [0, 1], and U(z) =
1

z
−
⌊
<
(

1

z

)⌋
On an input z ∈ D, the CoreGauss Alg performs z := U(z), until z 6∈ D.

It uses at each step the set of (inverse) branches of mapping U

H := {z 7→ 1

m+ z
; m ≥ 1}, the same set as the Euclid Alg.

The domain [R ≥ k + 1] is a union of disks : [R ≥ k + 1] =
⋃

h∈Hk
h(D)

Inside disk D,

the domains [R = k]

alternatively

in black and white

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]



D is the disk of diameter [0, 1], and U(z) =
1

z
−
⌊
<
(

1

z

)⌋
On an input z ∈ D, the CoreGauss Alg performs z := U(z), until z 6∈ D.

It uses at each step the set of (inverse) branches of mapping U

H := {z 7→ 1

m+ z
; m ≥ 1}, the same set as the Euclid Alg.

The domain [R ≥ k + 1] is a union of disks : [R ≥ k + 1] =
⋃

h∈Hk
h(D)

Inside disk D,

the domains [R = k]

alternatively

in black and white

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]

The disks h(D) are the “fundamental” disks

E[R] =
∑

h∈H?
[h(0)− h(1)]2,

A simple characterization of H? leads to

E[R] =
3

4
+

2

ζ(4)

∑
d≥1

1

d2

∑
d<c≤2d

1

d2
= 1.351094...

An alternative expression involves ....

ζ(3) and the tetralogarithm Li4... [FV. FOCS, 1990]



The domains [R = k]

alternatively

in black and white

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

But how to characterize Hk? More difficult! ...

Hervé Daudé’s PhD

Then ..... Hensley’s paper

Mayer’s Chapter in the Green Book
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Then ..... Hensley’s paper

Mayer’s Chapter in the Green Book



The domains [R = k]

alternatively

in black and white

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

But how to characterize Hk? More difficult! ...
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The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994, its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994, its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994, its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994, its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994, its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994,

its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994, its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



The Euclidean dynamical system

(EDS)

Pr[R ≥ k + 1] =
∑
h∈Hk

|h(0)− h(1)|2

The Ruelle-Mayer operator Gs, defined as

Gs[f ](x) :=
∑
h∈H

|h′(x)|s f ◦ h(x)

is the transfer operator related to the EDS.

It generates (with its k–th iterate) the subset Hk,

Gk
s [f ](x) :=

∑
h∈Hk

|h′(x)|s f ◦ h(x)

and Pr[R ≥ k + 1] = Gk
2

[
1

(1 + x)2

]
(0)

Spectral properties of G2 on a convenient functional space prove :

Pr[R ≥ k + 1] ∼ C λ(2)k with λ(2) := the dominant eigenvalue of G2

We “discovered” λ(2) in 1994, its value is λ(2) ∼ 0.1994...

Philippe wished to call it the Vallée constant...

He described 1994 as “the year of the constant λ(2)”...



II – Developments.

How to use the Ruelle-Mayer operator
in (almost) any Euclidean problem.

– Any problem related to continued fraction expansions

(continuous world, real variable)

– Any problem related to the Euclid Algorithm

(discrete world, rational variable)



Some instances of easy solutions for Euclidean problems – Real case (I)

Continued fraction expansion of x

x =
1

m1 +
1

m2 +
1

. . . +
1

mk +
1

. . .

Iterates Gk
s of the operator Gs generate

– the truncated CFE′s at depth k,

– the fundamental intervals

h(I) := [h(0), h(1)] with h ∈ Hk.

– the best rational approximation of a real x,

namely the rational h(0) =
pk
qk

(x)

Distance δk(x) between the real x and its best approximation pk/qk(x)

E[δk] expressed with Gk
2 =⇒ E[δk] ∼ C λ(2)k

Behaviour of log qk(x) : E[q2s
k ] expressed with Gk

1−s
Then, [spectral dominant properties+ quasi-power theorem]

=⇒ an asymptotic normal law for log qk

E[log qk] ∼ k|Λ′(1)|, V[log qk] ∼ kΛ′′(1) with Λ(s) := log λ(s),

Λ′(1) is the entropy, and Λ′′(1) is the Hensley constant.
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Other Euclidean problems – Real case (II)

Comparing reals via their continued fraction expansion

Comparison of two real numbers:

– related to the sign of the determinant,

– and the Hakmem algorithm.

The Hakmem Alg. and the Gauss Alg: the same geometry.

Pr[C ≥ k + 1] ∼ Dλ(2)k

Comparison of n real numbers via the trie
built on their continued fraction expansions

[J. Clément, Master Thesis, 98]

Typical depth Dn, Height Hn

E[Dn] ∼ 1

|λ′(1)|
log n

E[Hn] ∼ 1

| log λ(2)|
log n

a

a

a a

a
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Euclidean problems – Rational case. CFE(u/v) ∼ Euclid(u, v)

Study of the number of iterations P of the Euclid Algorithm.

For any integer pair of Ω := {(u, v); u < v, u, v coprime}

∃k, ∃h ∈ Hk,
u

v
= h(0),

1

v2
= |h′(0)|, P (u, v) = k.

Main idea: we introduce a generating function S(s) of Dirichlet type

and we relate it to the Ruelle-Mayer operator Gs:

S(s) :=
∑

(u,v)∈Ω

P (u, v)

v2s
=
∑
k≥1

k
∑

h∈Hk
|h′(0)|s =

∑
k≥1

kGk
s [1](0) = Gs ◦ (I −Gs)−2[1](0)

Two properties of Gs (on a convenient functional space)

– The map s 7→ (I −Gs)
−1 is analytic on <s ≥ 1; s 6= 1.

– A simple pole at s = 1

=⇒ Possible extraction of coefficients with a Tauberian Theorem

=⇒ A short proof of the estimate E[PN ] ∼ 2

|λ′(1)|
logN =

12 log 2

π2
logN
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III– Foundations of Dynamical Combinatorics.

Extensions of previous ideas to more general contexts.

In our previous studies, the Ruelle-Mayer operator Gk
s generates

– the fundamental intervals h(I) for h ∈ Hk

– the fundamental probabilities pw, for |w| = k

pw := the probability that CFE(x) begins with the sequence w

– the rationals u/v of depth k via their denominators v

as the branches are LFT’s : u/v = h(0) =⇒ 1/v2 = |h′(0)|

The role of Gs is central

because it is the transfer operator of the underlying dynamical system.

We wished to extend this use of transfer operators to other contexts

– Information theory: any dynamical system
viewed as a processus to produce symbols

– Euclidean context: any dynamical system underlying a Euclid alg
whose branches are LFT’s.
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because it is the transfer operator of the underlying dynamical system.

We wished to extend this use of transfer operators to other contexts

– Information theory: any dynamical system
viewed as a processus to produce symbols

– Euclidean context: any dynamical system underlying a Euclid alg
whose branches are LFT’s.



Very often, these extensions began with Philippe, and

– I mostly continued with other collaborators.

– He had a strong influence on my works

– I had very regular discussions with him.

A typical conversation (by phone, usually at the end of the afternoon)

P: On which subject have you worked today?

B: [...] Do you think this question interesting?

The answer was often “yes”, but not always “yes”...

B: I obtain this formula [the formula is spelled].

Do you think it is possible to deal with it?

P: The x, do you put it on the numerator or in the denominator?

B: [....]

P: I don’t know for this formula... But if you have another one ...

[the formula is spelled], it would be easier...

B: The i, is it in the exponent?
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Dynamical Combinatorics = Extension of Analytical Combinatorics

(Modified)transfer operators viewed as Generating Operators

In Period II, we studied the Euclid dynamical system,

with its transfer operator

Gs[f ](x) =
∑
h∈H

|h′(x)|s f ◦ h(x)

In Period III, extension to any weighted dynamical system

with its set H of branches weighted by some cost c.

It is useful to consider two points x and y,

Hs,w[F ](x, y) :=
∑
h∈H

wc(h)

∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣s F (h(x), h(y))

s marks the input size, and w marks the cost c

The secant

∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ replaces the tangent |h′(x)|
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Dynamical Combinatorics = extension of Analytical Combinatorics.

(Modified) transfer operator Hs,w viewed as a generating operator.

Hs,w[F ](x, y) :=
∑
h∈H

wc(h)

∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣s F (h(x), h(y))

Very often, generating functions involve the quasi-inverse (I −Hs,w)−1

Three main steps

– Determine

– the good weighted dynamical system

– and the related transfer operator adapted to the problem

– Translate the geometric properties of the weighted dynamical system into

spectral properties of Hs,w, then into analytical properties of (I−Hs,w)−1

(on a convenient functional space)

[a functional analysis step]

– Translate these analytical properties into asymptotics of coefficients

[a “classical” step in Analytical Combinatorics]
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Euclidean dynamics: study of (almost) any algorithm of Euclid type

The branches are always LFT’s, but the dynamics may differ a lot.

Extensions of the methods of Period II in four directions

– to other types of Euclid Alg.
the Binary Alg. – the Lyapounov tortoise and the dyadic hare.

– to other costs (for instance: bit complexity of Euclid Alg).

– to distributional analyses
with bivariate transfer operators

– to a precise comparison between Euclid and Gauss Alg.



In Information Theory,
the main object is :

[V. 2001]

the Dirichlet series of the source Λ(s) :=
∑
w∈Σ?

psw

pw := the probability that a word begins with prefix w

A general dynamical source

Λ(s) closely related to (I −Hs)
−1

where Hs is the (secant) transfer operator

of the dynamical system.
xT xT x2 T x3

M(x) = (c, b, a, c . . .)

A memoryless source, with probabilities (pi)

Λ(s) =
1

1− λ(s)
with λ(s) =

r∑
i=1

psi

x
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A Markov chain, defined by

– the vector R of initial probabilities (ri)

– and the transition matrix P := (pi,j)

Λ(s) = 1 + t1(I − P (s))−1R(s)

with P (s) = (psi,j), R(s) = (rsi ).
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Analysis of general tries

a

a

a a

a

a

b

bb

b b

c
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c

abc

b c b b b

cba bbc cab

– All the possible node structures: array – list – or BST

– Words produced by a general (good) dynamical source.

– Possible infinite alphabet

Here, focus on the height and typical depth [2001]:

Both means are of order log n [FV with J. Clément]

E[Dn] ∼ 1

|λ′(1)|
log n E[Hn] ∼ 1

| log λ(2)|
log n

What about the remainder term for the typical depth?

It depends on the shape of a “tameness” region R ⊂ {<s ≤ 1, s 6= 1}
where Λ(s) is analytic and of polynomial growth.

Later, we study the tameness of a memoryless source,

We relate the shape of an optimal tameness region

with diophantine properties of ratios log pi/ log pj .

[FV with M. Roux, 2010]
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IV– Towards a “realistic” analysis of algorithms?

– Concept of a general source, completely defined by the set
pw := the probability that the word begins with w.

=⇒ Parametrization by the unit interval I
There exists a map M : I → ΣN, continuous, increasing, s.t

each emitted word is (a.e uniquely) written as M(u) with u ∈ I.

– Analysis of the basic algorithms (sorting and searching alg.) when

– the inputs are random words of a general source

– the cost of a comparison between words
= the number of symbols needed in a lexicographic comparison.

Distribution of the coincidence C

= the length of the longest common prefix

Pr[C ≥ k + 1] =
∑

w∈Σk

p2
w



Realistic analysis of an algorithm using comparisons on keys.

Coincidence γ of the source S
γ(u, t) is the coincidence between M(u) and M(t)

Density φ of the algorithm A (using comparisons):

φ(u, t):= the “mean” number of key comparisons between u and t when they

are given to Alg. A after being inserted in a random sequence of I?.

We wished to build a general dictionary (and began to do it)

Source S, Mixed Dirichet series The number Sn

its coincidence γ $(s) of symbol comp.

and =⇒ depends both =⇒ performed

Alg A, on the source by Alg A
its density φ and the alg. on n words

=⇒: E[Sn] =

n∑
k=2

(−1)k
(
n

k

)
$(k)



A general dictionary

Source S, Mixed Dirichet series The number Sn

its coincidence γ $(s) of symbol comp.

and =⇒ depends both =⇒ performed

Alg A, on the source by Alg A
its density φ and the alg. on n words

E[Sn] =

n∑
k=2

(−1)k
(
n

k

)
$(k)

We [ = FV with Julien] have already determined the mixed series $(s)

– for Tries [2001],

– for Binary Search Trees (or QuickSort) [with J.Fill, 2009]

$T (s) = sΛ(s), $B(s) =
2Λ(s)

s(s− 1)
, with Λ(s) =

∑
w∈Σ?

psw



A general dictionary

Source S, Mixed Dirichet series The number Sn
its coincidence γ $(s) of symbol comp.

and =⇒ depends both =⇒ performed

Alg A, on the source by Alg A
its density φ and the alg. on n words

And now? Determine series $(s) in other contexts!

This autumn, we have begun to study Insertion Sort and Selection Sort

[with Julien and Thu Hien Nguyen Thi, our PhD student]

Philippe strongly wished to study digital search trees in this framework.

– We [FV] began to work on this subject on December 2010.

– in February 2011, we have planned a co-direction of a PhD thesis.

– The student Kanal Hun will arrive from Cambodgia in January 2012.

Philippe, we will continue this work.

This would have been your strong wish.
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