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Other potential titles for this talk.

Non-trivial exercises to illustrate the use of general
methodological tools to find universal laws.

Solution to hashing problems to be "solved" in future
published papers.

How to survive in a world full of (very few!) universal laws!:
"the hashing experience, what is left to us to solve!".

Personal approach

To give just a "taste" of Philippe Flajolet’s approach to
Analytic Combinatorics and motivate to take (or continue!)
our personal discovery experience.

Today, the main issue are not the specific results. This talk is
about ideas, "personal experience" and "feelings"!

Hope to reach a general audience. Philippe is a specialist in
achieving this goal!

Try to present Philippe Flajolet’'s own views, through the
analysis of hashing problems.



The fingerprint of every Philippe’s paper.

Our initial motivation when starting this project was to build & coherent set of
methods useful in the analysis of algorithms, a domain of computer science now well-
developed and presented in books by Knuth, Hofti, Mahmoud, and Szpankowski, in
the survey by Vitter—Flajolet, as well as in our earlier Introdicction to the Analysis of
Algorithms published in 1996, This book, HRalifie Cambinatorics; can then be used
as a systematic presentation of methods that have proved immensely useful in this
area; see in particular the Art of Computer Programming by Knuth for background.

THI§ BOOK is meant to be reader-friendly. Each major method is abundantly il-
lustrated by means of GORGIeleIEXamples’ [Featedif@etail —there are scores of them,
spanning from a fraction of a page to several pages—ofTering a complete treatment of
a specific problem. These are borrowed not only from combinatorics itself but also



Hashing and methodology in "Analytic Combinatorics"
Saddle Point and Hashing

mean, itselt’ asymptotic to logn/ loglogs. In addition, the saddiespointymethod may be used
instead of crude bounds. These results, in the context of longest probe sequences in hashing,
were oblained by Gonnet [301] under the Poisson model, Many key estimales regarding random
allocations (including capacity) are to be found in the book by Kolchin ef al. [3I88]. Analyses

of this gu are also useful in c\ralu.nnng various d;ml.mle hu.lﬂng nllmlthﬂ by means of
[217, 504]. . .l

Moment Pumping, Parking Problem and Hashing

[> VIL.54. A parking problem [1. This continues Example I1.19, p. 146. Consider m cars and
condition by the fact that everybody eventually finds a parking space and the last space remains
empty. Define total displacement as the sum of the distances (over all cars) between the initially
intended parking location and the first available space. The analysis reduces to the difference-
differential equation [249, 380], which generalizes (65), p. 146,

Fiz,q) —gFigz,
%F(!,q]:F(z'q).M_

I—gq
Wis applicable [249): the limit distribution is once more an Airy (of area type).
s problem arises in the analysis of the/linear hashing algorithm [380, §6.4] and is of

relevance as a discrete version of important escence models. Tt is also shown in [249] based
on [285] that the number of inversions in a Cayley tree is asymptotically Airy. <]



Hashing and other combinatorial problems.

Random Allocation and Hashing

11.3.2. Applications to words and random allocations. Numerous enumera-
tion problems present themselves when analysing statistics on letters in words. They
find applications in the study of random allocations [388] and the design of hashing
algorithms in computer science [378, 538). Fix an alphabet
> NL.11, Hashing and random allecations. Random allocations of balls into binsl arc

in the understanding of a class of important algorithms of computer science known as
ing [378, 537, 538, 598]: given a universe I{ of data, set up a function (called a hashing func-

Birthday Paradox, Coupon Collector and Hashing

itself but also in probability and statistics. In particular, labelled constructions of
words provide an elegant solution to two classical problems, the bifthday problem and
the goupon eollector problém, as well as several of their variants that have numerous
ppplicationssinvothersfieldsy including the analysis of hashing algorithms in computer

science.



1 Introduction

Address calculation methods may provide direct

access to data.

SOURCE | —> | ADDRESSES |
z— h(xz)=|m-z]

— Place key x at location h(z)
— Resolve collisions
e by chaining
e by “linear probing”, or other methods.

Works well for constrained data or random uniform data.

Example: Apple Il Basic: Use 2 letter identifiers and index in
26 x 26 table.




(

Natural data are often not uniformly random.
Reduction to randomness via

a HASHING FUNCTION h(z) : U —[0..m —1]
(previously h(z) = |m - z])

ar - Regular

!

Arithmetic hashing: take h(x) = value (z) mod m
Others: binary, Xor, etc, etc.

Vincent LuM et alii, 1979: works well on real files (DB).

The distribution of natural digrams in a dictionary of the English
language with about 25,000 words (in gray), and the smoothing that
results form hashing (in black).

\_
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2 Random Allocations

Collisions are barely avoidable, distrib. is irregular.

[m = # Urns, n = # Balls]

Theorem 0.

(2) Collisions occur early = Birthday Paradox

Ex{First collision /m cells} ~ ,/ ﬁ_;”

(¢1) Probability of no collisions in a full table is

n! e "

nn V2mn
(#ii) Empty cells disappear late = Coupon
Collector

Pr{No collision n = m} =

Exz{All m cells non-empty} ~ m -logm.
(iv) Even in an a-sparse allocation, o = -

log
Ex{Max bucket occupancy} ~ %

Collision management is a necessity

4

N\




(The Poisson Law governs balls-in-urns models

Thow n balls into 7 buckets. Let

be , 0 < a < oo. Then, asymptotically (m,n — +o00)

e the proportion of empty urns is ¢~ “, ;

e the proportion of k-urns is a Poisson law of param. «

vk

. o O
Poisson(a, k) := ¢ ‘ﬁ.
Proof.

m—1\" a

empty urns  m x ~mxe
m

n\ (m-—1)"k _aak
k—-urns: m X e ~mxe T—

k mn k!

= Analysis of separate chaining:

MY ke S
k=1 :

=



Trie searching, dynamic hashing and extendible hashing
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Abstract.

On the Performance Evaluation of Extendible Hashmg
and Trie Searching

Philippe Flajolet*
INRIA, Rocquencourt BP 105, F-78153 Le Chesnay Cedex, France

Summary. A class of treés occurs both in digital searching and in schemes
for maintaining dynamic hash tables, We study the distribution of height in
these trees using the saddle point method of complex analysis. As a result,
we derive a precise evaluation of the memory requirements of extendible
hashing - a dynamic hashing scheme - and discuss some related implemen-
tation issues.



Directory trie in Extendible Hashing.

BRAPR OO G ENENEN



Height of the Directory in Extendible Hashing.

Theorem 2. The average height of a b-trie constructed on n keys satisfies:

-1 +%) log,n+P ((1+%) logan) +o(1)

where P is a periodic and continuous function with period 1. Function P is
representable by a Fourier series with coefficients

1
=J'P(u}82ikxxdx
0
given by
1
_ |
Po= blogz [y—log(b+1)1],
= —x I
pk blogz n‘g (x.t]
h 21kx 2 f=1/6+1)!
where x, = bload og2 an



Size of the Directory in Extendible Hashing.

Theorem 3. The average size of the directory in extendible hashing when n keys
are present in the file satisfies for b>1

o[ )= 0 i)

where Q is a continuous per:’odic function with period 1 and Fourier coefficients:

1 1
Go=igz 6+ 17T (1-3):

2ik
=iy L0+ DT (—3)  m=prs

blogZ blog2’

The Fourier series of Q is absolutely convergent, so that Q is representable as:

Q)= 3, g™ .
ksZ
As a technical comment on Theorems 2 to 3, it may be of interest to notice
that similarsFouriersseries: otherwise G€CUT in the analysis of algorithms asgay

or in relation to certain regularitics of
T B

the longest probe sequence in hashing with separate chaining, the reader can
consult [5].



Bias probabilities and a factorization algorithm.

Finally, in Section &, we indicate how to extend our methods to cope with
the case of a biased distribution on bits of keys of hashed values.
Consideration of this situation is motivated by some recent improvements
on Berlekamp's factorization algorithm [Kné%1, [CZ81], [LaB81] and we
prave @
_THEQREM 2 : The expected height of a simpla trie (b=1) of n lsaves when bits in -’caya-
have a biased probability of p for zerce and q for ones satisies

2 Logzn

H = + 0(1)

Lﬁgz(nzﬂlz)-
This theorem solves a problem Left open in [La8T] whose algorithm apnears
to factorize a plynomial with r factors in approximately (2+e) Lagpr
"main" steps.



Computer graphic tools in 1982.

We propose to take for contour T' a contour that crosses the saddle point
closest to the origin along the direction of decrease and hooe for
localization properties of the resulting integral (7).

Figure 2 : The Topopranhy of Jenlz)|
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Abstract and Conclusions.

s s s v 1 sy oo hocaion e
that include: (1) the birthday paradox: (i) the coupon collector prof g -vecently- )

caching in memory management sysiems under ihe independent reference model; (iv) the move-1o-front
heuristic of seli-organizing search. AN analyses are relative 10 general nonuniform probability distribu-
lions,

Our approiach 10 these problems comprises two stages, First, the probabilistic phenuisnd of interest
are described by means of regular languages extended by addition of the shuffle product. INEXE, System-
ufic iranslaiion mechanisnms/are used o derive integral representations for expeciations and probability
distributions.

7. Somr conclusions

It is cle=- that sur derivations are not *‘unique’’, and ANEFAANIVE combinatorial
or probabilistic arguments could be (or have been) EiVENIOF Some of ‘Our resulis]
Our goal has been to show how addition of the shuffle product to regular ianguages
leads to direct analysis of a natural class of random allocation problems. That ap-
proach is of valve in more complex situations. For instance, problems around multi-
level caching are natural candidates and they are discussed in [186].



Birthday Paradox.

3. Birthday paradox

The alphabet . represents here the dates in a year with m days, and p; is the
probability of date a,€.#7. We consider the following generalization of the birthday
problem:

BP. Determine the expectation of the number B; of elements that need to be
drawn from .o (with replacement) till we first encounter j distinct ele-
ments that are each repeated at least k times (i.e., the waiting time will
the jth different letter occurrence of a k-hit).

The case k=2, j=1 Is the classical birthday problem. Klamkin and Newman [23]
have given an integral formula for j=1 (first hit) and general & in tie sniform case
where p;=1/m.

Theorem 3.1. The expectation E{B,} of the time for obtaining j different letter oc-
currences of a k-hit under a general probability distribution {p;};* , is given by

J=1 p= an
B(B) =T, \0 lu'](‘_l:ll @ o(pi1)+ ule™ -e*-,(mf}}])e"dl @

where ¢,(t) represents the truncated exponential
r 2 "
-l = 4 e =,
a=14y 4y kt



Coupon Collector.

4. Coupon collector proilem
The alphabet .of now represents the set of coupons, with p; being the probability
that coupon i is issued. The general coupon collector problem is the following:

CCP.  Determine the expectation of the number C; of elements that need to
be drawn from .o (with replacement), till one first obtains a collection
with j different coupons.

Theorem 4.1, The expeciation E{C;} of the time necessary to gather a collection of
J different items under a general probability distribution is given by

J=1 e m
et = L | wi( I osue-m)ea, (13)
q=0 tg i=1
and for a full collection,

E(C,} = \: (I -Tla —c"‘"'}) dr. (13b)

Proof. Form (13a) is just a SpecialiZaiomORISHmUANE) (0 the case k=1, and



LRU Caching.

(3) Least-recently-used caching [LRU]: Caching algorithms aim at maintaining
fast access to a large number of items by keeping a small “cache’ that may be ad-
dressed quickly. The classical problem of cache analysis consists in determining the
steady state probability of a cache **fault™ when items are accessed with a fixed,
not necessarily uniform, distribution, The LRU caching strategy consists in applying

replacement, when needed, to the oldest element in the cache (the *‘least-recently-
used” element).

Theorem 5.1. The long run probability D of a cache fault in the LRU algorithm is
given by

k-1 o
1-D= E ] ‘ St )P, we " de, (un
Yo

a=0

where functions & and ¥ are

L n p:
= . =y ——~———., 18
(1, 1) ‘]:ll(H»ule 1) and Pi,u) .; T D) (18)



Move to Front.

MTF. When an clement in position f is accessed, it is moved to the front of the file.
Elements in position 1,2, ...,j— | are shifted back by one position.

Formally, the MTF rule is exactly an LRU caching algorithm in which the cache
size k is equal to the file size m = card(.«). Page faults disappear and the transition

Our purpose is only to show that the analysis of MTF can be cast in the frame-
work of shuffies of languages. The theorem that follows is due to McCabe [32],
useful references on the subject being [26, 34,4, 18].

Theorem 6.1 [32]. The expected cost of a search with the move-to-front heuristic
applied to a file with access probabilities { p;}I* | is

E=-is § BB
2 ysijem Pi+p;

Our line of proof, admittedly not the simplest possible, **explains’” the derivation
of Theorem 6.1 that appears in [26, p. 403]. In essence Knuth's derivation amounts
to operating with an ordinary generating function equivalent to B(z; v) and com-
puted directly by summing over all possible cases. Our proof also yields information



Bucket selection and sorting.

Acta Informatica 36, 735-760 (2000)

Analytic variations on bucket selection and sorting

Hosam Mahmoud®, Philippe Flajolet?, Philippe Jacquet®, Mireille
Régnier’



Abstract.

Abstract. We provide complete average-case as well as probabilistic anal-
ysis of the cost of bucket selection and sorting algorithms. Two variations of
bucketing (and flavors therein) are considered: distributive bucketing (large
number of buckets) and radix bucketing (recursive with a small number
of buckets, suitable for digital computation). For Distributive Selection a
compound Poisson limit is established. For all other flavors of bucket selec-
tion and sorting, central limit theorems underlying the cost are derived by
asymptotic techniques involving perfurbation of Rice’s integral and contour
integration (saddle point methods). In the case of radix bucketing, periodic
fluctuations appear in the moments of both the selection and sorting algo-
rithms.



Relation with Hashing (Methods!).

of Radix Sort. Although central limit theorems were not known before in
the context of bucket sorting, the methods of analysisare gonnected to some
classical as well recent in tries (Jacquet and Régnier (1988)) and
hashing with linear probing olet, Poblete and Viola (1998)). Therefore
our arguments in Section 3 will be sketchy. Section 4 concludes with a
discussion.
For this form of bucket sorting we consider the functional equation of
Lemma 2 when specialized to the case b = n. Specialized to the case b = n,
the right hand side of this equation can be viewed as the nth coefficient n
a generating function. We can express the specialized equation in the form

L]
n! o 2
balu) = — 2" [ Dowi(w) = | -
n — j!
This representation admits the following central limit result. The theorem

follows from a rather general result in Flajolet, Poblete and Viola (1998) for
hashing with linear probing which broadly states that, undersuitable;con=

_ We work through some of the details to obtain the




Distributive selection.

2.1 Distributive selection

This version (with b = n) of bucket selection is easiest to analyze when the
algorithm switches to a standard selection algorithm A within a bucket. Ex-
tracting the coefficient of u* from the equality of Lemma 1 when specialized
to the case b = n:

Pz ~# = kSRt -me- (). @

=1

The term n~"(n — 1)"~7(7) = n~7(1—1/n)"~7(7) is the probability that
B(n,1/n) = j, which for any given j converges to e~ /(j — 1)! by the
standard approximation of the binomial distribution of B(n, 1/n) to P(1).
At any fixed k, passing to the limit (as n — o) gives us

. oo el

ﬂlirHE‘._‘]?'{Z,.l =k} = ._IP{Y} = k}m (5)
b

Theorem 1 In the selection of a randomly chosen rank from among n ran-

dom keys by Distributive Selection, whose algorithm within a bucket makes

Y; operations for random selection in a file of size j, the extra cost afier

the first layer of bucketing satisfies a limiting compound Poisson law (in the

sense of (5)):

D
Zn — Yp(1y+1-



Radix Selection.

Theorem 2 Let C,, be the number of bucket operations (digit extractions)
performed by Radix Select using B (fixed) buckets to find a randomly chosen
order statistic among n keys. If we set A\g = B/(B — 1), then as n — oo,

E[Cn] = Apn +loggn + P(logg n) + o(1),

Var(Cp] = B"‘f —n+0(ln’n),

where P is a smooth periodic function. The law of C\, is asymptotically

normal: C -2 N
n— ARl T B
A BN (05E).



Distributive sorting.

Theorem 3 Let C,, be the cost of Distributive Sort to sort n random keys.
Suppose for some fixed 8 > 0, the algorithm applied in the buckeis uses
Y; < 7% operations costing o unils each (the unit being the cost of one
bucketing operation). Then

Co—(14+apn o 3
In —>N(ﬂ,c¥25r ),
where
o0 oo 2
po BN o G SEM

=3 &7



Radix Sorting.

Theorem 4 Let C,, be the cost of Radix Sort (number of digit extractions)
to sort n random keys. Then (C,, — L) //V,, tends in distribution and in
moments to the standard normal variate N'(0, 1) with

Ln—(hn+7+¥+ﬂ(h1n)) + O(lnn),
Vo =n(C(B) + Py(Inn)) + O(In’ ),
where

C(B) = ﬁ G +1n2 +2i [ln(l +B7F)+(1+ B—k)—z]) ?

and the functions P(x), and Po(x) are periodic functions with small am-
plitude and period In B,

Remark. The average was found by Knuth and De Bruijn; the analysis for
the case I3 = 2 s presented in Knuth (1973; pp. 131-134). Related variance
analyses appear in Kirschenhofer, Prodinger, and Szpankowski (1989).



General idea of the proof.

Proof of Theorem 4. The proof is divided into three parts: the mean value
analysis, the variance analysis, and finally the limit distribution result. Mg

by Poissonization, where one considers the number
of keys to have come from the P(n) distribution instead of a fixed popu-
lation model. Recurrence equations arise in a natural way for Poissonized
averages. These equations are solved exactly by iteration and the resulting
form is approximated via the Mellin transform and its inverse. The variance
follows suit, only the exact computation and the approximation by Mellin
transform are a lot more complicated. The limit distribution is obtained by a
direct analysis of the recurrence at hand. The Poissonized form (14) is ma-
nipulated to show that a suitably normed version of the Poissonized number
of comparisons follows a Gaussian law. The fixed population result is then
extracted by depoissonization,



Linear Probing Hashing.
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The mathematical beauty of Linear Probing!

Mathématiques discrétes et continues se rencontrent et se complétent
volontiers harmonieusement. C'est cette thése que nous voudrions illus-
trer en discutant un probléme classique aux ramifications nombreuses—
I'analyse du hachage avec essais linéaires. L’exemple est issu de I'analyse
d’algorithmes, domaine fondé par Knuth et qui se situe lui-méme «a
cheval » entre l'informatique, 'analyse combinatoire, et la théorie des
probabilités. Lors de son traitement se croisent au fil du temps des ap-
proches trés diverses, et l'on rencontrera des questions posées par Raias

un travail d’été de et qui
est & des recherches

en analyse combinatoire du statisticien [KreéWerss] diverses rencontres
avec les modeéles de graphes aléatoires au sens d'Erdis et Rényi, un peu
d’analyse complexe et d’analyse asymptotique, des arbres quon peut
voir comme issus de processus de Galton-Watson particuliers, et, pour
finir, un peu de processus, dont l'ineffable mouvement Brownien! Tout
ceci contribuant in fine A une compréhension trés précise d'un modéle
simple d’aléa discret.



Ramanujan’'s Q Function.
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Abstract.

Abstract

This study provides a detailed analysis of a function which Knuth discovered to play a central réle in the analysis of
hashing with linear probing. The function, named after Knuth Q(n), is related to several of Ramanujan's investigations. It

surfaces in the analysis of a variety of algorithms and di probability probl including hashing, the birthday
paradox, random pping istics, the “rho” hod for integer factorization, union-find algorithms, optimum
caching, and the study of memory conflicts.

A process related to the I i hods of singularity analysis and saddle point inte

precisely quantify the beha\nr.-ur of the Q{n} function. In this wa)' tight bounds are derived, They

In the 1911 issue of the J. Indian Math. Soc., Ramanujan [ 18] poses the following problem: Show
that

de"=1+4— o " E + o+ %9, where @ lies between 4 and 4. (1.1)

A solution was then outlined in [19]. Later in his first letter to Hardy dated 16 January 1913 (see
[20, p. xxvi], [1, p. 181], [8]), Ramanujan makes a stronger assertion, namely that
4
0=+ S5 hy
A solution to the weaker inequality (1.1) was given by Szegd in 1928 [21], and almost
simultaneously Watson [23] wrote a paper where he proved (1.1) and adds regarding (1.2): “I shall

also give reasons, which seem to me fairly convincing, for believing that k lies between £ and #". Our
purpose here is to *

where k lies between £ and #. (1.2)



Ramanujan’s Q function into play.
The variant form used by Knuth introduces the two functions
Q-1 4=t =Y

H

I (1.3)

R[n)—1+n+1 Frness T
and one finds easily

Q(n) + R(n) = nle"/n".
w1 et

n" n
A R Y

which entails

+ -+, (1.4

Zom =1 — 0% and 6m) =4 (R() — Q(m).
In this way, Ramanujan’s problem can be rephrased as: “Show that

8
R — Q) =3 + 350+

where k = k(n) lies between #; and §5”. Following Knuth, this is the form that we shall take as our
starting point, setting D{n) = R(n) — @(n), so that D{n) = 20(n).

The approaches followed by _ all make use of real integral
representations derived from

o n—1
Q[n]=J c"(l +f) dx, (15)
0 n



The Tree function y(z).

An important function in combinatorial analysis is the function y(z) defined implicitly by the
equation

y(z) = 2@, 2.1
with y(z) =z + 22 + 3z%2 + ---. By the Lagrange inversion formula, we have' the following
proposition.

Proposition 1. The Taylor coefficients of y(z) = ze** and its powers are given by

nl n-k—1

(216 =% and [Z146) = kg = @2)

Furthermore, a generating function of Q(n) is expressible in terms of y(z):

E Qmyn"~ ‘n =logy—— (2.3)

1
¥y

Theorem 2 (Ramanujan, Watson and Knuth). The guantities Q(n), R(n) admit full asymptotic
expansions in descending powers of | /n:

mn 1 1 T 4
0~ 5 =3 3y
m 1 1 [n 4
R("’“\/7+§+E PRRET R

Proof. We sketch here the proof based on singularity analysis (see [22, 14, 5] for related develop-



Main result.

Theorem 7. With the quantity 8 = 6(n) being defined by
1, n o n? n"
EE =1+E+E+ +EE’

one has, for all integers n = 0,

1 N 4

37 135(n + k)’

where k = k(n) lies between & and ;.

g =



Methodology . ..

5. Some conclusions

It may be of interest, at last, to reflect on the various alternatives that offer themselves in order to
estimate asymptotically sequences like Q(n) or D(n).

(1) [Eaplaeeimeihod] The Laplace method for integrals, based on the integral representation (1.5)
was the starting point of earlier approaches. As Szegd and Watson show, it can be made
“constructive” (instead of providing only O-bounds) but its operation becomes then somewhat
intricate.

(2) [SigularityaRGIYSiS] This is the method that gave us here the expansion of Theorem 2. It is
based on the fact that the implicitly defined function y(z) has an algebraic singularity of the ,/-type,
from which the singularity types of the generating functions associated with Q(n) or D(n) follow.
The method can also accommodate constructive bounds on a function’s coefficients [6]. Conse-
quently, it might be applicable to derive Theorem 7, although, in this case, bounding y(z) in the
appropriate region would probably prove unwieldy.



.and more methodology!

(3) [Darbaix smethadl Darboux’s method also leads to a full asymptotic expansion by a route
very similar to singularity analysis. However, it does not have the capacity to provide bounds since
i i intrinsically based on a nonconstructive lemma on Fourier seies.

(4)|S@ddIEpoinE. This is in essence the route that we took, after a suitable change of variable. Its
application in the case of implicitly defined functions and Lagrange series is also to be traced in
Darboux’s works, an interesting combinatorial application occurring in [12]. By this method, we
were able to reduce the problem to the task of finding simple bounds for elementary functions on
circles and line segments. Interestingly enough, when considering the conformal mapping defined

by »'~"(z), it appears that the induced contour in the z-plane closely resembles the type of|
This establishes
a




Linear Probing and a box full of surprises!

Algorithmica (1998) 22: 490-515 A]goriﬂ ica
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On the Analysis of Linear Probing Hashing'

P. Flgjolet, P. Poblete,* and A. Viola*



Abstract

Abstract. This mmmmmmmmmfmm-
Two models ane considered, that of full tables

and that of sparse tables with a fixed filling ratio strictly smaller than one. For full tables, the construction
cost has expectation O(n*7), the standard deviation Isnflbcmmlu;mdh

holds, (The Airy distribution iz a semiclassical diztribution that iz defined in terms of the usual Adry functions

oteq:ivaleﬂlyhlemaofBu&e]ﬂn:ﬁmofindinﬁl—‘.’.}For tables, the construction cost hag
cxpoctation (), sandard deviation O/, and + EREMSRRGTHYS ComEARHRN
wimmﬁms leading to Airy phenomena (like graph connectivity, free inversions, tree path length, or

are algo briefly discussed,



Companion paper in Special Issue (Flajolet’'s 50th birthday).

Linear Probing and Graphs

Donald E. Knuth, Stanford University

Abstract. Mallows and Riordan showed in 1968 that labeled trees with a small number of
inversions are related to labeled graphs that are connected and sparse. Wright enumerated
sparse connected graphs in 1977, and Kreweras related the inversions of trees to the
so-called “parking problem” in 1980. A combination of these three results leads to a
surprisingly SplE S G eGP SN RS PEaBEg, including higher

moments of the cost of successful search.



Main part of one of several mails exchanged with D. Knuth.

Date: Mon, 29 Sep 1997 13:15:21 -0700 (PDT)

To: Philippe.Flajolet@inria.fr
Subject: note from Don Knuth

Dear Ph, Ordinarily | am not happy to receive email, but in this
case it was very touching to learn that you had decided to dedicate
such a nice paper to me, just after | had (secretly) decided to
dedicate reference [22] to you!

But | haven’t time to study it in detail now, as I'm working 150%
time on the new edition of Volume 3...

Best regards, Don



Combinatorial approach to Linear Probing.

The purpose of this note is to exhibit a surprisingly simple solution to a problem that appears
in a recent book by Sedgewick and Flajolet [9]:

Exercise 8.39 Use the _to derive the EGF of the number of probes

required by linear probing in a successful search, for fixed M.

The authors admitted that they did not know how to solve the problem, in spite of the fact that a
“symbolic method” was the key to the analysis of all the other algorithms in their book. Indeed,
the second moment of the distribution of suceessful search by linear probing was unknown when
[9] was published in 1996.



Combinatorial Analysis (FPV).

2.1. Combinatorial Analysis. We define F, ; as the number of ways of creating an
almost full table with n elements and total displacement k. The corresponding bivariate
generating funetion is then

z"
Fz.q)= Y Fug*=,
n k=0 n:

Fig. 1. The binary tree decomposition of almost full tables.

n—1

-1
Fig =) (” i )F}(qJ(l +g+-+g ) Fiklg).

k=0



Solution to the fundamental recurrence (Knuth).

et " o o1
> (e — 1) Fua(z) =0 = i (2.17)

a=1 =0

n!

3. Connected graphs. We are interested in the behavior of F), (r) near x = 1, so it is convenient

to write x = 1 + w. Then (2.17) becomes
oo n

z
- (3.1)

P il
w? TV F, (1 4+ w) e In Z(l + w}“(“_”"rz p
1

n= =0

Ao the FENESURORHETROH < o1 known os tho B oI EEERECOMORAbE
T T——

Wl Fooa(1+w) = Cy(l +w) = Zwedges(t?}‘ (3.2)



Conclusions (Knuth).

7. Personal remarks. The problem of FGHEIpHNENSHEHANMGAONIINGH, bocause
I found it immensely satisfying to deduce (5.4) when I first studied the problem in 1962. Linear

probing was the first algoritlun that 1 was able to analyze successfully, and the experience had a

significant effect on my future career as a computer scientist. Noue of the _
were powerful enough to deduce the expected square displacement, much less the higher moments,

so it is an BT ERCATETIpIEASTT eI oI ENbIE oI EFESTENESTITSNGaA] from other Work that has

The reader will note that Sedgewick and Flajolet's xercisensonmsmnommmlymbeemmsolved

strictly speaking, becanse we have not found the EGF 23;01 Fn(x) 2"/n! as requested. However,
' Sedgewick and Flajolet should be happy with any analysis of linear probing that uses symbolic
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ON THE ANALYSIS OF
LINEAR PROBING HASHING

Philippe Flajolet, INRIA Rocquencourt
(France)

‘My first analysis of an algorithm originally
done during Summer 1962 at Madison.”
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3 Linear Probing Hashing

LINEAR PROBING: Phystics of “What goes on”?

— For , expect a behaviour like separate chaining
(S.C.H.): isolated elements only.

— For , clusters start to form. These should be a
bit larger than S.C.H.

— As , “clotting” takes place.

. m
— suffers from large displacement ~ >

B oE o3 o311 &

QUANTIFY?
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A story that starts with Knuth in 1962

® A decomposition based on adding a new element

(2

[ ﬂ Going through Abel identities

(z+y)(z4y+n)"~" = lJZ( ) (z4k)*H(y+n—k)nhL

A And concluding with Ramanujan’s function

Q(n) =1+

%_'_(71, - 1)('71, 2) (71 —1)(n—=2)(n-3) N

n? n3




: > 83852
HOTES K "OPEN" ADDRESSING. : D, Knuth, 7/22/63

o L. Introduction and DELinfer

nédressing 1s a videly-used tochaique

Tor keeping Taymbol tables," The method vas Firet wed n 1955 by Semel, Aaduti,

Boshze in en mssemdly program for the I 01, An extensive discussion of
e etnog vas giten by Petesson Ln 1951 (1], axd srequent. xeferences hm- veen
made’to it ever since (e.g. Schay and S ruih (2, Treracn [31). Horerar,

Thotng oharseracisi & parently ng CT5r estaitened, and 4me=a
the auiior has heard reports of sesRed repatasic RatheRkticians ho Falled 5o
find the solusion after some trial. Tharefore it is the purposs of this note to
indicate one vay by vhica the solu.ion can be obtained,

e A1 uso the folloving sbstract noel o deseribe the aethols T 1s o positive
integer, and ve have sn array of G variables x),Xp,.esykgs A The'beginmings
% =0, for 181K,

To "enter the k-th item in the tabic Sew that o dnteger ay ds celeulsted
LE ANy dopencing ondy on the ifen, sas the following process'is carried o

7 e Sompebizen step,” Oy set xj =1 end stop; we say "tae

ko Incrsase § by 1 and cetura to step
1 Srep ia- mniered teice, the table is S
horuise set § to 1 and retum %o step 2

fee.x s 1 for LELE M

Observe the oyelic charaster of this algoritim.
¥ are cancered uith tne statistlse of this mehod, VIV Mespect 10 the munber
of tings the comparison step mist Lo exscuted. Mora precisely, we consider all of

the ¥% possible sequences l\.ﬂ....ak S0 be caslly oravable, and e ssk,
ison step is used wrecisely- m- fimes when

Toe k-th iten is slacedl’

2. onoverfloy (self-concained) 3:suences.
0

et Lied genoue vhe muster of senicnoes wyepin (L2 ) tnhien no

Overflou step oteurs during the em.ire prosesa of slacing b iters, if th

Daorivhm 15 ees rox k2o u, mmw on, ve set

[el= 4

Lmnmsgm,m [y mw)“-k(nl)k"

SR te T il 1 4

R L T e s vt “omis Toion
cvery sequende of the”Rirver tre ic ons of e lstter, and conversely ihe con-
diglon fmplics in particular thay 1 &5y @ n, and that no overrlow step coours.

a8

Syt seaunces of the lsbtor tyye ace ssaily smnarated, ecause the slgord
cizculer symmetrys of the (n1)¥ josidle comoncas Gy sbg,.siby, WRAcEly
TR AR T S sty

D (-5,
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4 Analytic Combinatorics

Two basic principles — “dictionaries”
SYMBOLIC METHODS

Generating functions

— gl

2477 +2° +22' +22° +42° 1527 + 925+

Analytic functions and singularities

10



CONSTRUCTIONS

Foe A = 1=

1 2 g
ﬁ=1+f+f 4

exp(.f):1+f+%f2+$f3+m

AUB = A(z)+B(z)
AxB —  A(z)xB(z)

1
Seq A =TT aAe a0
Set A —  exp(A(2))
CycleA +— log 1%4(:)

11




COMPLEX ASYMPTOTICS
Dictionary (II)

Point of re

Point of singularity. -3 %f(:)‘

cularity. f(z) = f(z0) + f'(20)(z — 20)

12




13




Distributional analysis (almost full tables)

® Record construction cost = total displacement

o n—1

[

| coooooo] Jooooo] |
E+1 n—£f
FICURE 1. The binary tree decomposition of almest full tables.

n—1
n—1 .
Fu@)=Y ( . )mq)u gt g Fai(o)-
o —Calculus

2 2
E :qn 52
n

The construction cost is worst-case quadratic

G
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5 Analysis of L.P.H

Almost full tables n = m — 1 have a tree decomposition.

<Full> := <Full> * <Last> * <Full>

with Position

Products — Products

C=AxB —  C(:)=A(z) B(2)
Cp = XL: <Z>AkB,,,k
Adding an element — /, Cp=An1
C=Add(A) = C(x)= /0 A(w) dw.

Choosing a position — 9, C, = (n +1)A,

C = Pos(A) —

14



Asymptotics

e Find the singularities of an

z=Te T =0

— : OK if partial derivative is
nonzero

— Singularity when partial derivative equals 0

1-Tet=0

The system gives | T =1, z = ¢~ |

Singular dependence between z and T is locally quadratic

T(z) = 117\/1\/17(:+O(17€Z)

T, n

~ =
n! 2m

n

Gives back Stirling’s formula since T,, = n" 1.

= Analyse any expression involving T'(z)

.

16



" = [71]:1+q+02+...qn—1:11*_4(1"
n! — [n]! = [1] . [2] . [n]

Y+ D)faz" = Yln+1faz"

0 i) = Hf()= TP
;1) HIfG) = =

Many “combinatorial identities” survive in the g-world, with
¢ —1
EXAMPLE. [Euler] (exp(z))~! = (exp(—=2))

(CF) (5o 5)

18



(6 Limit distribution

A method of “pumping” moments

— Start from nonlinear (BGF)

B[F(z.q)] =0

— Apply to get rth moment.

— Expect linear L with
Lfr=®ulfosfreee s froi]

— Solve exactly and/or or asymptotically (singularities)
Method used on

e Quicksort, Hennequin 1989: 100 moments; nonGaussian law
o Path length in trees, Takacs 1990*

e Area below walks, Louchard 1984

o In situ permutation, Knuth 1972, Prodinger et alii

Path length in Cayley trees:




(

Moments and reduced singular structure

Pumping moments ad libidinem ‘

1 1 1
B D e Ve e o
Lemma.
:f,»(:)NW

r—1
2C, = (3r —4)rCr—1 + E (’) CiCr—j 7> 1.
: J
j=1

Tree decomp. +— Functional Eq. — Quadratic recurrence

By singularity analysis implies

E{(dnno1)} ~ =

5 ()

22




Airy functions
Quadratic recurrence — Riccati ODE +— Linear ODE

Y’

Y=y +by+tc y=-v

The GF of moment coefficients diverges (taken in asymptotic
sense) but it is expressed in terms of Airy function.

Airy solution to

1 [ 1
Ai(z) = = St ozt dt
i(z) 77./0 cos (3 + ) d

Use Airy-Bessel asymptotics to get all moments.

.
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.

Moment problem

A . if the "Moment generating function”

M(z) = Z/Lr%

has nonzero radius of convergence, then the law is uniquely
determined by its moments.

A _
distributions

. Convergence of moments implies convergence of

w(w)=e" pp =1l = M(2) =

Theorem. For almost full tables, convergence to the Airy
distribution,

Pr{

dyn—1

(n/2)72

where X is Airy distributed. E[X"] = —

< J‘} — Pl‘{A\" <

wh Dy3(w)
%:OQ" T T ()
B 2 w (4v? = 1) = 9) fw\2
B() = 1= =) (57) + S (5;)
(402 — 1) (4% — 9) (4% — 25) w3
B 3! (24) o

J

24



The Airy desnity
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7 Sparse tables

A table with 1 cells and 7 elements has g = m — n “gaps”.

Bivariate GF is: (F'(z,q))?
The analysis can be “recycled”

n .
Theorem. For a-sparse tables, &« = —, mean and variance:
m

Eldm,n] = 3(Qp(m.n — 1) — 1),
E[d2, 1= 7% (m. —n)P +(n+3)m—n)2 4 (Bn+1)(m—n)+5n? f4an—1
—((m —n)® +4(m — n)2 4 (6n + 3)(m —n) +8n)Qqg(m,n — 1)) .

_ _ _9 _ —9)(n—:
Qo(m,n) =1+ n—1 4 (n 1)(l)n 2) n (n—1)(n 3_)(71 3) 4
m m? m*

(&% a
E[{Im,u] = 2(1 _ (\)” - 2(1 _ 0)3

6a — 60> +4a® — o
Varldn,] = ==

+ O(lfl),
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The limit distribution
Theorem. A Gaussian law.

Proof. Integral of large powers by saddle point

1 n_dz
[;”](F(:J[))m_” — m (F(;,([))m #

Plus continuity theorem for characteristic functions ¢ = ¢’

Works for large assemblies!

E.g. [Mahmoud] Distribution sorts with O(n) buckets.

.




Methodology again! Specific method is general!

The process used in the proof of the last theorem is in fact very general and we
encapsulate it into a general statement.

COROLLARY 1. A4 Gaussian limit law holds for the coefficients of any “large power,”
"G ™, B =0,

(B fixed, n — o0) provided the following conditions hold:

(C)) Glz,q) = E,‘ £:(q)z" has nonnegative coefficients and dep g,(g) = O(n") for
some integer k.

(C2) There exists some r with 0 < r < 400, such that G(z, 1) is analyticin |z| < r,
and G{0,1) # 0, GL(0, 1) # 0.

(C3) limeoyp- 2GL(z, 1)/ G(z, 1) = +o0.

(Cs) There exists ny, ny, ky, ko with ky # ky such that the coefficients [z g® Gz, q)
and [z"¢%]G(z, q) are nonzero.
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8 Combinatorics

The Airy distribution occurs in

— (1) Full tables for L.P.H.

— (2) Inversions in Trees

— (4) Area below random walks

— (5) Path length in random trees

The Airy coefficients occur in

— (3) Enumeration of connected graphs

Why?? Foata, Kreweras, Gessel, Knuth, Spencer, Louchard,
Takacs, Wright, etc.

o _
Z gD/ 2(g—1)"
n!
F(z,q) = "= =
N Ui
= n!

om—l

(n=1)V

F(z,q+1) = Z’y7zn+t—1)

n,t

28



— Inversions — Graphs — Paths — Tree P.L.

LPH has Airy distrib.

0.F=F-HF
Set z — z(1 — ¢) and get connected graph GF.

n(n+41)/2 -1

a n!

8

I
<]

F(zq) = -

n(n—l)/2;n((1 - 1)7'1
n!

L

q

3
I
o

= "Closed form” but moments are still “hard" to
find!

Hashing + Inversions |+ Graphs +— Paths — Tree P.L.

. Almost
full table are combinatorially equivalent to trees.

Correspondence: Connect a key/car to (immediately
before) where it wanted to land.

Inversions in trees have Airy distrib.

28-1



Hashing — | Inversions — Graphs |— Paths — Tree P.L.

Correspondence: Depth-first search as a combinato-
rial correspondence.

. Count connected
graphs by excess. The Giant
paper

Graphs by ex

Hashing — Inversions — | Graphs - Paths |+ Tree P.L.

Correspondence: Breadth-first search as a combina-
torial correspondence.

ess counted by Airy coeff.

Leads to Poisson walks.
Analyse area by moments and/or Brownian
motion Connects to area of Dyck/Catalan paths by
universality of Brownian motion

1
= g-exponentials

1S
w

Excursion area has an Airy distribution

28-2



Hashing — Inversions — Graphs — | Paths — Tree P.L.

Correspondence: Catalan (Dyck) walks as traversal
sequences of Catalan trees.

Moment methods apply to simple
families.

Path length in simple trees has Airy distrib.

28-3



‘Airy phenomena have a large degree of universality |

From FIaonet—SaIvy (1995): analytic explanation
Lemma. Let U(2) := Y ugz®. Then, ¢ =¢7¢,

o= /2 Ule I\[)dl

2 Pu= \/>——

k

Combinatorics — Coalescent saddles — Airy

Cf. Crossing in chord
systems.

.




"Monkey Saddle" as the ALGO project’s logo.

Algorithms Project's Logo

Our logo shows the behaviour in the complex plane of the generating function of connected graphs counted according to number of nodes and edges. In critical regions, two saddle points
coalesce giving rise to a so-called "monkey saddle” (a sic’ldle that you'd use if you had three legs!)

The This problem has applications in the design of communication networks and it relates
to a famous series of problems inifiated by Erdos and Renyl in the Tate s. See the paper (Janson, Knuth, Luczak, Pittel: The birth of the giant component. Random Structures Algorithms
4(1993), no. 3, 231--338]. As said by Alan Frieze in his review [MRO4h:05070]:

"This paper and its predecessor [MR90d:05184] mark the entry of generating functions into the general theory of random graphs in a significant way. Previously, their use had
mainly been restricted to the study of random trees and mappings. Most of the major results in the area, starting with the pioneering papers of P. Erdés and A. Renyi
[MR22#10924] have been proved without significant use of generating functions. However, at the early stages of the evolution of a random graph we find that it is usually not too
far from being a forest, and this allows them an entry..."

The icon was generated by Maple code like this:

fi=0"3/3-3*w];
nlnts[wmuleanlmd]t[Re(f) arqueent(f)],
4.3*1..4+3* [, style=patcheontour,
contours=38, numpoints=56¢56);



18 years have already passed

from our first scientific meeting!



Since then
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. Philippe dreamed with . ..
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.and lead the construction of . ..
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...a strong research group.
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It is up to us to keep this dream alive.

AofA'11

22th International Meeting on Proba C ina Asymptotic Methods in the Analysis of Algorithms

Conference dedicated to the memory of Philippe Flajolet

Home

Letter

Participants

Obiutary

Dur photo:

Previous

Lectures

Plenary speakers

Committees

Travel

Social events

Conference fees

Participants

Participant Form




We have to keep working as we have always done.
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