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How to sort n words?

– Which sorting methods? based on which underlying data structures?
– Which words? emitted by which source?

We focus on two main data structures,
– the Trie, underlying the RadixSort algorithm,
– the Binary Search Tree, underlying the QuickSort algorithm,

built on words independently emitted by the same general tamed source....

We also describe the particular case of the continued fraction source.
How to sort numbers given by their continued fraction expansions ?

The tameness of the CF–source is closely related to the Riemann hypothesis.
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The classical framework for sorting.

The main sorting algorithms or searching algorithms
e.g., QuickSort, BST-Search,...

deal with n (distinct) keys U1, U2, . . . , Un of the same ordered set Ω.
They perform comparisons and exchanges between keys.
The unit cost is the key–comparison.

A more realistic framework for sorting.

Keys are viewed as words. The domain Ω of keys is a subset of Σ∞,
Σ∞ = {the infinite words on some ordered alphabet Σ}.
The words are compared [wrt the lexicographic order].
The realistic unit cost is now the symbol–comparison.

The realistic cost of the comparison between two words A and B,
A = a1 a2 a3 . . . ai . . . and B = b1 b2 b3 . . . bi . . .

equals k + 1, where k is the length of their largest common prefix
k := max{i; ∀j ≤ i, aj = bj}= the coincidence
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Here, we perform a realistic analysis of the QuickSort algorithm
and its underlying data structure, the Binary Search Tree (BST),

with respect to the number of symbol–comparisons

An initial question asked by Sedgewick in 2000, in order to compare
with algorithms of type Radix-Sort based on Tries.

A comparison between three mean path lengths, with n data.

– The mean classical path length Kn of the the BST.
– The mean realistic path length Bn of the the BST
– The mean path length Tn of the trie

An example.
Sixteen words of length 12 ....

drawn from the memoryless source p(a) = 1/3, p(b) = 2/3.....
Observe the trie and the BST built on this sequence of words...
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A = abbbbbaaabab B = abbbbbbaabaa C = baabbbabbbba D =bbbababbbaab E = bbabbaababbb
F = abbbbbbbbabb G = bbaabbabbaba H = ababbbabbbab I = bbbaabbbbbbb J = abaabbbbaabb

K = bbbabbbbbbaa L = aaaabbabaaba M = bbbaaabbbbbb N = abbbbbbabbaa O = abbabababbbb P = bbabbbaaaabb
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– The main result
– The model of sources.
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– What is a tamed source?
– The particular case of the Continued Fraction Source.



For n words independently drawn from the same tamed general source,

– the mean path length Tn of a trie,

– the mean symbol–path length Bn of a BST

= the mean number of symbol comparisons in QuickSort

satisfy Tn ∼
1

hS
n log n, Bn ∼

1
hS

n log2 n.

They involve the entropy hS of the source S, defined as

hS := lim
k→∞

−1
k

∑
w∈Σk

pw log pw

 ,

where pw is the probability that a word begins with prefix w.

Same results previously obtained for tries and BST on particular sources
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hS
n log n, Bn ∼

1
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n log2 n.

They involve the entropy hS of the source S, defined as

hS := lim
k→∞

−1
k

∑
w∈Σk

pw log pw

 ,

where pw is the probability that a word begins with prefix w.

Compared to the mean key–path length Kn of the BST, Kn ∼ 2n log n,

Bn has an extra factor 1/(2hS) log n

Compared to the mean path length Tn of the trie, Bn has an extra factor log n
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The (general) model of source.

Source. A general source S produces words on an alphabet Σ.
To u ∈ I := [0, 1] it associates a word M(u) ∈ Σ∞.
The lexicographic order on Σ∞ is compatible with the order on I.

For any source S, for any prefix w ∈ Σ?,
the reals u for which the word M(u) begins with w form an interval,
denoted by Iw, called the fundamental interval relative to the prefix w.

The measure of the interval Iw is the probability that M(u) begins with w,
pw, called the fundamental probability of the prefix w.

A main (analytical) object:
the Dirichlet series of fundamental probabilities,

Λ(s) :=
∑

w∈Σ?

p−s
w .
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Natural instances of sources: Dynamical sources

With a shift map T : I → I and an encoding map τ : I → Σ,
the emitted word is M(x) = (τx, τTx, τT 2x, . . . τT kx, . . .)

xT xT x2 T x3

A dynamical system, with Σ = {a, b, c} and a word M(x) = (c, b, a, c . . .).
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Memoryless sources or Markov chains.
= Dynamical sources with affine branches....
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The dynamical framework leads to more general sources.

The curvature of branches entails correlation between symbols

Example : the Continued Fraction source



The dynamical framework leads to more general sources.

The curvature of branches entails correlation between symbols
Example : the Continued Fraction source



Fundamental intervals and fundamental triangles.
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Three main steps for the analysis of the path length Sn

(A) The Poisson model PZ does not deal with a fixed number n of
keys. The number N of keys is now a random variable which follows a
Poisson law of parameter Z.

We first obtain nice expressions for S̃Z ....

(B) It is now possible to returm to the model where the number of keys
is fixed. We obtain a nice exact formula for Sn ....

from which it is not easy to obtain the asymptotics...

(C) Then, the Rice formula provides the asymptotics of Sn ( n →∞),
as soon as the source is “tamed”.
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(A) Dealing with the Poisson Model.

In the PZ model, the number N of keys follows the Poisson law

Pr[N = n] = e−Z Zn

n!
,

the mean number S̃(Z) of symbol comparisons for building the structure
is expressed as:

– a sum over the set Σ? of all possible finite prefixes,
– each term S̃w(Z) dealing with a prefix w.

Trie. The contribution T̃w(Z) of prefix w to the path length is

T̃w(Z) = E[Nw] = Zpw[1− e−Zpw ],

where Nw is the number of words that begin with prefix w,
Nw = 1[Nw≥2] ·Nw

Nw follows a Poisson law of parameter Zpw.
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BST. The mean number of symbol–comparisons is

B̃(Z) =
∫
T

[γ(u, t) + 1]π(u, t) du dt

where T := {(u, t), 0 ≤ u ≤ t ≤ 1} is the unit triangle
γ(u, t):= coincidence between M(u) and M(t)

π(u, t) du dt := Mean number of key-comparisons between M(u′)
and M(t′) with u′ ∈ [u, u + du] and t′ ∈ [t− dt, t].

(a) An (easy) alternative expression for

B̃(Z) =
∫
T

[γ(u, t) + 1]π(u, t) du dt =
∑

w∈Σ?

∫
Tw

π(u, t) du dt.

which involves the fundamental triangles
and separates the rôles of the source and the algorithm.
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Fundamental intervals and fundamental triangles.
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BST. The mean number of symbol–comparisons is

B̃(Z) =
∫
T

[γ(u, t) + 1]π(u, t) du dt

where T := {(u, t), 0 ≤ u ≤ t ≤ 1} is the unit triangle
γ(u, t):= coincidence between M(u) and M(t)

π(u, t) du dt := Mean number of key-comparisons between M(u′)
and M(t′) with u′ ∈ [u, u + du] and t′ ∈ [t− dt, t].

(b) A nice expression for π(u, t):
M(u) and M(t) are compared in QuickSort

iff the first pivot chosen in {M(x), x ∈ [u, t]} is M(u) or M(t)

π(u, t)dudt = Zdu · Zdt · E
[

2
2 + N[u,t]

]
= (Z2dudt) · 2f1(Z(t− u))

where N[u,t] is the number of words M(x) with x ∈ [u + du, t − dt],
(which follows a Poisson law of parameter Z(t− u))

and f1(θ) := θ−2[e−θ − 1 + θ].



BST. The mean number of symbol–comparisons is

B̃(Z) =
∫
T

[γ(u, t) + 1]π(u, t) du dt

where T := {(u, t), 0 ≤ u ≤ t ≤ 1} is the unit triangle
γ(u, t):= coincidence between M(u) and M(t)

π(u, t) du dt := Mean number of key-comparisons between M(u′)
and M(t′) with u′ ∈ [u, u + du] and t′ ∈ [t− dt, t].

With (a) and (b), it is equal to

B̃(Z) = 2Z2
∑

w∈Σ?

∫
Tw

f1(Z(t− u))dudt

and involves
– a sum taken over all the prefixes w ∈ Σ?,
– the fundamental triangles Tw,
– the function f1(θ) := θ−2[e−θ − 1 + θ].



(A) Dealing with the Poisson Model.

In the PZ model, the number N of keys follows the Poisson law

Pr[N = n] = e−Z Zn

n!
,

the mean number S̃(Z) of symbol comparisons for building the structure
is expressed as:

– a sum over the set Σ? of all possible finite prefixes,
– each term S̃w(Z) dealing with a prefix w.

Both for the Trie and the BST:

T̃ (Z) =
∑

w∈Σ?

f0(Zpw), B̃(Z) = 2Z2
∑

w∈Σ?

∫
Tw

f1(Z(t− u))dudt

with f0, f1 of exponential type...



(B) Return to the model where n is fixed.
With the expansions of f0, f1,

S̃(Z) =
∞∑

k=2

(−1)k$(−k)
Zk

k!
,

is expressed with a series $(s) of Dirichlet type,
which depends both on the data structure and the source.

Series $T , $B are related to the Dirichlet series Λ(s) of probabilities

$T (s) = −sΛ(s), $B(s) = 2
Λ(s)

s(s + 1)
, with Λ(s) :=

∑
w∈Σ?

p−s
w

Since
Sn

n!
= [Zn]

(
eZ · S̃(Z)

)
, there are exact formulae for Tn and Bn

Tn =
n∑

k=2

(−1)k

(
n

k

)
kΛ(−k) Bn = 2

n∑
k=2

(−1)k

(
n

k

)
Λ(−k)

k(k − 1)
.
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(C) Using Rice formula

As soon as $(s) is “weakly tamed” in <(s) < σ0 with σ0 > −2,
the residue formula transforms the sum into an integral:

Sn =
n∑

k=2

(−1)k

(
n

k

)
$(−k) =

1
2iπ

∫ d+i∞

d−i∞
$(s)

n!
s(s + 1) . . . (s + n)

ds,

with −2 < d < min(−1, σ0).



(C) Using Rice formula

As soon as $(s) is “weakly tamed” in <(s) < σ0 with σ0 > −2,
the residue formula transforms the sum into an integral:

Sn =
n∑

k=2

(−1)k

(
n

k

)
$(−k) =

1
2iπ

∫ d+i∞

d−i∞
$(s)

n!
s(s + 1) . . . (s + n)

ds,

with −2 < d < min(−1, σ0).

Where are the singularities ?

Recall: $B(s) = 2
Λ(s)

s(s + 1)
, or $T (s) = −sΛ(s),

where Λ(s) :=
∑

w∈Σ?

p−s
w has always a singularity at s = −1.

What type of singularity? Is it the dominant singularity?



– The data structures, the Trie and the BST
– The main result
– The model of sources.
– The main steps of the method.
– What is a tamed source?
– The particular case of the Continued Fraction Source.



What can be expected about Λ(s)?

— For any source, Λ(s) has a singularity at s = −1.

— For a tamed source S, the dominant singularity of Λ(s) is located
at s = −1, this is a simple pôle, whose residue equals 1/hS .

—In this case, there is a double pôle at s = −1 for
$T (s)
s + 1

=
−sΛ(s)
s + 1

and
$T (s)
s + 1

∼ 1
hS

1
(s + 1)2

s → −1

—In this case, there is a triple pôle at s = −1 for
$B(s)
s + 1

= 2
Λ(s)

s(s + 1)2

and
$B(s)
s + 1

∼ 2
hS

1
(s + 1)3

s → −1
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For shifting the integral to the right, past... d = −1,
other properties of Λ(s) are needed on <s ≥ −1, –more subtle–

Different behaviours of Λ(s) for <s ≥ −1 where one can past d = −1...

In colored domains, Λ(s) is meromorphic and of polynomial growth for |s| → ∞.

For dynamical sources, we provide sufficient conditions
(of geometric or arithmetic type), under which these behaviours hold.

For a memoryless source, they depend on the approximability of ratios log pi/ log pj
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Plan of the talk.

– The data structures, the Trie and the BST
– The main result
– The model of sources.
– The main steps of the method.
– What is a tamed source?
– The particular case of the Continued Fraction Source.



The Continued Fraction Source

The Dirichlet series of fundamental probabilities satisfies

Λ(−s) = 2−s +
[
2s−1 − 1

] ζ(s)2

ζ(2s)
+

2s

ζ(2s)
ζ−+(s)

where the alternating zeta function ζ−+(s) is defined as

ζ−+(s) :=
+∞∑
n=1

(−1)n

ns

n−1∑
q=1

1
qs

.

It is an entire function.

Then, the continued fraction source is

strongly tamed, with an abscissa σ1

related to s for which ζ(2s) = 0.

If the Riemann hypothesis is true,

one can choose σ1 = −1/4.



Conclusions.

— Our methods apply to the mean number of symbol-comparisons in
QuickSelMin and QuickSelRand (Clément, Fill, Flajolet, V. 08).
It is sufficient that the source be weakly tamed.

— It is easy to adapt our results to the intermittent sources, which
emit “long” sequences of the same symbol. In this case,

Sn = Θ(n log3 n), Tn = Θ(n log2 n).

— What about the distribution of the average search cost in a BST?
Is it asymptotically normal?

We know that this is true if one counts the number of key–comparisons.
We also know that, for a tamed source, the average depth of a trie is
asymptotically normal (Cesaratto-Vallée, 2007).
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