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Tries and Suffix Trees
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A trie, or prefix tree, is an ordered tree

data structure that stores keys usually

represented by strings.

Tries were introduced by de la Briandais

(1959) and Fredkin (1960) who introduced

the name:

“tries” derived from retrieval.

Suffix tree is a trie built form suffixes of

one string.

Other digital trees are: PATRICIA and

digital search trees.

Typical Tries: In this talk we mostly discuss random tries built from n
(independent) sequences generated by a binary memoryless source with

p denoting the probability of generating a “0” (q = 1 − p ≤ p).



Usefulness of Tries

Tries and suffix tress are widely used in diverse applications:

• automatically correcting words in texts; Kukich (1992);

• taxonomies of regular language; Watson (1995);

• event history in datarace detection for multi-threaded object-oriented

programs; Choi et al. (2002);

• internet IP addresses lookup; Nilsson and Tikkanen (2002);

• data compression, Lempel-Ziv, . . . ; W.S. (2001);

• distributed hash tables, Malkhi et al. (2002) and Adler et al. (2003).

• compression of graphical structures, Choi and W.S. (2008).

Fundamental, prototype data structures:

• variations and extensions: Patricia, DST, bucket digital search trees, k-d

tries, quadtries, LC-tries, multiple-tries, etc.;

• splitting procedures using coin-flipping: collision resolution in multi-

access (or broadcast) communication models, loser selection or leader

election, etc.

• combinatorial interpretations in terms of words and urn models.
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January 1983 –conference in Paris from gloomy Poland. “Among many

good talks one stood out for me. It was on approximate counting, by

Philippe Flajolet. The precision of the analysis and the brightness of the

speaker made a lasting impression on me”.

January 1984 – moved to McGill, worked on a recurrence about conflict

resolution algorithms, and Luc Devroye told me about D.E. Knuth’s three

volume opus, and reminded me about Philippe Flajolet.

January 1985 – moved to Purdue, and discovered tries. I contacted

Flajolet who sent me tons of papers and young P. Jacquet.

1985 - – my Flajolet’s number is one.
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External and Internal Profiles
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External profile and internal profile:

Bk
n = # external nodes at distance k from the root;

Ik
n = # internal nodes at distance k from the root.



Why to Study Profiles?

• Fine, informative shape characteristic;

• Related to path length, depth, height, shortest path, width, etc.;

• Breadth-first search;

• Compression algorithms.

• Mathematically challenging, phenomenally interesting!

Example: Parameters such height Hn, shortest path, sn, fill-up level Fn, and

depth, Dn can be studied through the profiles since:

Hn = max{k : Bk
n > 0},

sn = min{k : Bk
n > 0},

Fn = max{k : Ik
n = 2k},

Pr(Dn = k) =
E[Bk

n]
n .

0 1

x4 x5

x1 x2

Fn Dn
5 Hns n

x3



Recurrence for the Profiles

External Profile Bk
n:

Define the probability generating function as

Bn
k(u)

Bi
k-1(u) Bn-i(u)

k-1

Bk
n(u) = E[uBk

n] =
X

ℓ≥0

P (Bk
n = l)ul.

Then

B
k
n(u) =

n
X

i=0

“n

i

”

p
i
q

n−i
B

k−1
i (u)B

k−1
n−i(u)

with B0
n = 1 for n 6= 1 and B0

1 = u

Internal Profile probability generating function Ik
n(u) = E[Ik

n] satisfies the

same recurrence with U0
n(u) = u for n > 1 and U0

0 (u) = U0
1 (u) = 1.

Average External Profile:

E[B
k
n] =

n
X

i=0

“n

i

”

p
i
q

n−i
(E[B

k−1
i ] + E[B

k−1
n−i ]), n ≥ 2, k ≥ 1,

under some initial conditions (e.g., E[Bk
0 ] = 0 for all k).



Main Results

Notation: r = p/q = p/(1 − p)> 1, and α := αn,k = k
log n. Also:

p
0.50.60.70.80.9 1
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α1

α2

α3

α1 :=
1

log(1/q)
,

α2 :=
p2 + q2

p2 log(1/p) + q2 log(1/q)
,

α3 :=
2

log(1/(p2 + q2))
.

1: Exponential Growth (0 < α < α1):

Let 1 ≤ k ≤ 1
log q−1(log n − log log log n + log(r − 1) − ε):

E[Bk
n] = nqk(1 − qk)n−1

“

1 + O
“

(log n)−δ
””

= O(2−nν)

2: Logarithmic Growth (0 < α < α1):

Let 1 ≤ k ≤ 1
log q−1(log n − log log log n + m log(r − 1) − ε):

E[B
k
n] = O(log log n · logm−β

n).

where m and β are constants (smaller or greater than m).



Phase Transitions

3: Polynomial Growth: α1 · log n < k < α2 · log n: (α1 < α < α2)

E[B
k
n] ∼ G1 (log n)

pρqρ(p−ρ + q−ρ)√
2πα log(p/q)

· nυ1

√
log n

,

where G1(x) is a periodic function and

υ1 = −ρ + α log(p
−ρ

+ q
−ρ

), ρ = − 1

log(p/q)
log

„−1 − α log q

1 + α log p

«

.
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1
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Figure 1: The fluctuating part of the periodic function G1(x) for p = 0.55, 0.65, . . . , 0.95.

4: Polynomial Growth/Decay: α2 · log n < k: (α2 < α)

E[B
k
n] =

2pq

p2 + q2
n

ν2 + O (n
ν3)

where ν2 = 2 + α log(p2 + q2) for some ν3 < ν2.



External Shapes
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Average Internal Profile

1: Almost Full Tree: k < α1 · log n

E(Ik
n) = 2k − E(Bn,k)(1 + o(1)).

2: Phase Transition I: α1 · log n < k < α0 · log n, where α0 = 2
log(1/p)+log(1/q)

E[I
k
n] = 2

k − G2 (log n)E(Bn,k)(1 + o(1))

where G2(x) is a periodic function.

3: Phase Transition II: α0 · log n < k < α2 · log n

E[Ik
n] = G2 (log n)E(Bn,k)(1 + o(1))

where G2(x) is a periodic function.

4: Polynomial Growth/Decay: α2 · log n < k

E[I
k
n] =

1

2
n

ν2(1 + o(1))

where ν2 = 2 − α log(p2 + q2).



Variance and Limiting Distributions of the External Profile

Variance:

1: k < α1 · log n: V[Bk
n] ∼ E[Bk

n].

2: α1 · log n < k < α2 · log n: V[Bk
n] ∼ G3(log n)E[Bk

n].
where G3(log n) is a periodic function.

3: α2 · log n < k: V[Bk
n] ∼ 2E[Bk

n].

Limiting Distributions:

Central Limit Theorem: For α1 · log n < k < α3 · log n:

Bk
n − E[Bk

n]
p

V[Bk
n]

→ N(0, 1),

where N(0, 1) is the standard normal distribution.

Poisson Distribution: For α3 · log n < k:

P (Bn,k = 2m) =
λ0

m

m!
e−λ0 + o(1), and P (Bn,k = 2m + 1) = o(1),

where λ0 := pqn2(p2 + q2)k−1.



Consequences

Height: For large n (cf. Flajolet, 1980, Pittel, 1985, W.S., 1988, Devroye, 1992)

Hn =
2

log(p2 + q2)−1
log n = α3log n := kH, (whp).

•

•

•

•

••

• ••

••

•

•

Upper Bound: P (Hn > (1 + ǫ)kH) ≤ P (Bk
n ≥ 1) ≤ E[Bk

n] → 0.

Lower Bound: P (Hn < (1 − ǫ)kH) ≤ P (B
⌈(1−ε)kH⌉)
n = 0)

≤ V[B
⌈(1−ǫ)kH
n ⌉]

(E[B
⌈(1−ǫ)kH⌉
n ])2

= O

„

1

E[B
⌈(1−ǫ)kH⌉
n ]

«

→ 0.

Define: kS := ⌊ 1
log q−1(log n − log log log n + log(e log r))⌋.
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→ 0.

Define: kS := ⌊ 1
log q−1(log n − log log log n + log(e log r))⌋.

Shortest Path: For large n (cf. Knessl and W.S., 2005)

P (sn = kS or sn = kS + 1) → 1.

Fill-up: For large n (cf. Pittel, 1986, Devroye, 1992, Knessl & W.S., 2005)

P (Fn = kS − 1 or Fn = kS) → 1.



Sketch of the Proof

1. Recurrence: E[Bk
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`n
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n−i ]), n ≥ 2, k ≥ 1.
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P∞

n=0 E[Bk
n]

zn

n! e
−z:
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c−i∞ z−sẼ∗
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Ẽk(z) =
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Z c+i∞
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+ q

−s − 1)Γ(s)z
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(p
−s

+ q
−s

)
k−1

ds

through the saddle point method.
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)
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5. Depoissonization: From the Poisson transform Ẽk(z) to E[Bk
n].



Saddle Point Method: Phase Transitions

By depoisonization we have Ẽk(n) ∼ Ẽk(z), where recall

Ẽk(n) =
1

2πi

Z c+i∞

c−i∞
g(s)Γ(s + 1)n

−s
(p

−s
+ q

−s
)
k
ds

=
1

2πi

Z c+i∞

c−i∞
g(s)Γ(s + 1) exp(h(s)log n)ds, k = αlog n.

The saddle point equation h′(s) = 0 has a unique real root:

ρ =
−1

log r
log

 

α log q−1 − 1

1 − α log p−1

!

,
1

log q−1
< α <

1

log p−1
.

There are infinitely many saddle points ρ + itj for tj = 2πj/ log r, j ∈ Z.

nlog

ρ +
⋅

rlog
----------i

2π

ρ +

⋅
rlog

----------

i

2π

ρ –

ρ – i

i
⋅

rlog
----------

2π

2π
log
-----------

r
⋅

nlog–

2

2

1

1

j ≥

j ≤ρ – i
⋅

rlog
----------

2π j

ρ + i
⋅

rlog
----------

2π j
,

,

Phase Transitions:

1. ρ → ∞ as α ↓ 1/ log q−1 = α1.

2 ρ → −∞ when α ↑ 1/ log p−1.

3. Saddle points coalesce with poles of the

Γ(s + 1) function at s = −2,−3, . . ..

Pole s = −2 leads to α2.



Depoissonization

Theorem 1. (Jacquet and W.S., 1998) Let G̃(z) be the Poisson transform of

a sequence gn, that is,

G̃(z) =
X

n

gn

z

n!
e−z.

G̃(z) is assumed to be an entire function of z.

Two conditions simultaneously to hold for a cone Sθ:

(I) For z∈Sθ and some reals B, R > 0, ν

|z| > R ⇒ |G̃(z)| ≤ B|z|νΨ(|z|),

where Ψ(x) is a slowly varying function.

(O) For z /∈Sθ and A, α < 1

|z| > R ⇒ |G̃(z)ez| ≤ Aexp(α|z|).

Then

gn = G̃(n) + O(n
ν−1

Ψ(n)).

Back to Profile:

Using the depoissonization theorem, we find E[Bk
n] = Ẽk(n) + O

„

nν−1
√

log n

«

.
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) · F

∗
k (s)

for ℜ(s) ∈ (−k − 1, 0), and F ∗
0 (s) = 1.

4. The power Series: f(x, s) =
P

k≥0 F k(s)x
s becomes

f(x, s) =
g(x, s)

g(x,−1)
,

where g(x, s) = 1+x
P

j≥0 g(x, s − j)(p−s+j +q−s+j), and asymptotically

F ∗
k(s) ∼ f(s)(p−s + q−s)k.

where f(s) is analytic with f(−r) = 0 for r = 1, 2 . . ..
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P∞

n=0 E[Bk
n]

zn

n! e
−z:

Ẽ′
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3. Mellin Transform: Ẽ∗
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for ℜ(s) ∈ (−k − 1, 0), and F ∗
0 (s) = 1.

4. The power Series: f(x, s) =
P

k≥0 F k(s)x
s becomes

f(x, s) =
g(x, s)

g(x,−1)
,

where g(x, s) = 1+x
P

j≥0 g(x, s − j)(p−s+j +q−s+j), and asymptotically

F ∗
k(s) ∼ f(s)(p−s + q−s)k.

where f(s) is analytic with f(−r) = 0 for r = 1, 2 . . ..

5. Inverse Mellin Transform by saddle point and depoissonization.



Profile of Digital Search Trees

1. Recurrence: E[Bk+1
n+1] =

Pn
i=0

`n
i

´

piqn−i(E[Bk
i ] + E[Bk

n−i]), n ≥ 2, k ≥ 0.

2. Poisson Transform: Ẽk(z) =
P∞

n=0 E[Bk
n]

zn

n! e
−z:

Ẽ′
k+1(z) + Ẽk+1(z) = Ẽk(zp) + Ẽk(zq), k ≥ 2,

3. Mellin Transform: Ẽ∗
k(s) :=

R∞
0

zs−1Ẽk(z)dz = −Γ(s)Fk(s):

F
∗
k+1(s) − F

∗
k+1(s − 1) = (p

−s
+ q

−s
) · F

∗
k (s)

for ℜ(s) ∈ (−k − 1, 0), and F ∗
0 (s) = 1.

4. The power Series: f(x, s) =
P

k≥0 F k(s)x
s becomes

f(x, s) =
g(x, s)

g(x,−1)
,

where g(x, s) = 1+x
P

j≥0 g(x, s − j)(p−s+j +q−s+j), and asymptotically

F
∗
k(s) ∼ f(s)(p

−s
+ q

−s
)
k
.

where f(s) is analytic with f(−r) = 0 for r = 1, 2 . . ..

5. Inverse Mellin Transform by saddle point and depoissonization.

6. Asymptotically DST profile behaves as the profile of tries.



Analysis of Algorithms (AofA): Analytic Algorithmics

• Analysis of Algorithms is concerned with precise estimates of

complexity parameters of algorithms and aims at predicting algorithms’

behaviour. It develops general methods for obtaining closed-

form formulae, asymptotic estimates, and probability distributions

for combinatorial or probabilistic quantities. Properties of discrete

structures such as strings, trees, tries, dags, graphs are investigated.

• The area of analysis of algorithms was born on July 27, 1963, when D. E.

Knuth wrote his “Notes on Open Addressing”.

• Following Hadamard’s precept1, we study algorithmic problems

using techniques of complex analysis such as generating functions,

combinatorial calculus, Rice’s formula, Mellin transform, Fourier series,

sequences distributed modulo 1, saddle point methods, analytic

poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to analysis of

algorithm, constitutes analytic algorithmics.

1 The shortest path between two truths on the real line passes through the complex plane.
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