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Surfaces: let Sg be the compact orientable surface of genus g.
S0 is the sphere, S1 the torus; in general Sg is a ”sphere” with g handles.

A map of genus g: combinatorial description of a proper embedding in Sg .

A graph G of genus ≤ g: there exists a proper embedding of G in Sg .

...

vertex labels: {1,. . ., n}

Proper = Faces must be topological disks: no handle inside a face.

Euler’s formula reads v + f = e + 2− 2g.
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Euler’s formula: v + f = n + 2

vertex or face marked
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Theorem: Uniform random planar maps with
n edges can be generated in linear time from
the closure of uniform random ordered trees.
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Let x0 > 0 be such that A(x0) is finite (e.g. x0 < ρA)
Γ[A](x0) is a Boltzmann generator of parameter x0 for A if

Pr(Γ[A](x0) = a) = x|a|

A(x)
for all a ∈ A.

• Composite Boltzmann generators can be assembled for the sum, product
and composition of combinatorial classes.

Γ[A+ B](x) := if Bern(
A(x)

A(x)+B(x)
) thenΓ[A](x) elseΓ[B](x)

Γ[A× B](x) := (Γ[A(x)], Γ[B(x)])

Γ[A ◦ B](x) := let a = Γ[A](B(x)) in (a; (Γ[B](x))|a|)

Suppose we have Boltzmann generators Γ[A](x) and Γ[B](x). Then
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Theorem: if Γ[A ◦ B] is Boltzmann then so are Core(Γ[A ◦ B]) and
First(Γ[A ◦ B]), where Core(γ) = a and First(γ) = b1.
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Initial model: Labelled and rigid unlabelled structures
Duchon, Flajolet, Louchard, Schaeffer (2002)

Fusy (2006) and Flajolet, Fusy, Pivoteau (2007) and Bodirsky, Fusy, Kang and Vigerske (2007)

Efficient oracles for the evaluation of generating series
Pivoteau, Salvy, Soria (2008)

• Boltzmann in progress...

Applications: plane partitions, colored structures, deterministic automata,
XML documents, Appolonian structures...

Bodini, Fusy, Pivoteau (2006), Bodini, Jacquot (2008), Bassino, Nicaud (2006), Bassino, David, Nicaud (2008),
Darasse, Soria (2007), Darasse (2008),Bernasconi, Panagiotou, Steger, Weißt (2006)

Complexity depends on |An| xn

A(x)
: good choice of x = xn and pointing.
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Γ[1-c] := let G2 = Γ[2c] in G2 ◦v ( Γ[1c], . . . , Γ[1c]| {z }

#{vertices of G2}

)
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A (very rough) idea of Eric Fusy’s generator for random planar graphs:

The result is a Boltzmann generator for planar graphs. Uniform sampling
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Warning: I skipt a ”lot” of details (rerootings, bivariate compositions...)
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→ Learn how to increase the genus bijectively by marking k-uples
of vertices in trees

→ Sample you very own random genus g maps

→ Hear about the almost sure giant 3-c component of genus g in maps!

\begin{advertizing}

→ Take a try on proving our random genus g graph conjecture

\end{advertizing}

Many thanks again to Philippe, and to the audience

Boltzmann graphs wait around the corner



Random graphs on surfaces: a conjecture (S. 2007)

Take a uniform random labelled graph Xn in the set of graphs
of genus ≤ g with n vertices.

Then Xn a.s. has a unique 3-connected component of linear size C(Xn),
and:

• C(Xn) is a.s. a random 3-connected graphs with minimum genus g,

• C(Xn) a.s. has a unique embedding on Sg ,

• all other components are planar and of size O(n2/3),

and Xn converges when n goes to infinity to ”the” genus g brownian map.

and Xn converges when n goes to infinity to ”the” genus g brownian map.





An example: Boltzmann for planar maps, via trees

Let A is the familly of ordered trees: a tree decomposes into a root and a
sequence of subtrees attached by edges:

A = {r} × Seq({e} × A)

Γ[A](x) := let k = |Γ[Seq](xA(x))| in
`
r; ({e} × Γ[A](x))k

´
where the size of a random sequence under the Boltzmann model simply
follows a geometric law: Pr(|Γ[Seq](p)| = k) = pk(1− p).
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This approach was pursued by Chassaing-Durhuus (2005), Marckert-
Mokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar
quadrangulations converge in the large size
limit to a random continuum planar map
that has spherical topology.

In particular there exists no
separating cycle of size � n1/4.

The bfs exploration works also for higer genus surfaces:
Theorem (Chapuy-Marcus-S. 2006) The distance between 2 ran-
dom vertices of a random quad Xg

n of genus g is of order n1/4.

Conjectures.
There is no non-contractible cycles with size � n1/4.
The rescaled continuum limit exists and has genus g.
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