Random generation of combinatorial structures

Uniform random maps and graphs on surfaces using Boltzmann sampling

Gilles Schaeffer
CNRS / Ecole Polytechnique, Palaiseau, France

Uniform random generation?

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite.
Ex: ordered trees (n edges)

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite. }
$$

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees:

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\cup \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite }
$$

Uniform random sampler $\operatorname{U} \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite }
$$

Uniform random sampler $\operatorname{U} \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite }
$$

Uniform random sampler $\operatorname{U} \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite }
$$

Uniform random sampler $\operatorname{U} \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite }
$$

Uniform random sampler $\operatorname{U} \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

$$
\Rightarrow
$$

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite. }
$$

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

$$
\Rightarrow
$$

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite. }
$$

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

$$
\Rightarrow
$$

Uniform random generation?

A combinatorial class \mathcal{A}, ranked by a size: $\mathcal{A}_{n}=\{a \in \mathcal{A},|a|=n\}$ finite. Ex: ordered trees (n edges) or balanced parenthesis words (n pairs)

$$
\left|\mathcal{A}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n} \text { is finite. }
$$

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Ex: for ordered trees: apply a uniform random permutation to $\left({ }^{n}\right)^{n}$ to get a uniform random word among the $\binom{2 n}{n}$ parenthesis words

it is a bijection: $\binom{2 n}{n}=(n+1)\left|\mathcal{A}_{n}\right|$; the output tree is uniform

Uniform random generation?

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

it is a bijection: $\binom{2 n}{n}=(n+1)\left|\mathcal{A}_{n}\right|$; the output tree is uniform

Uniform random generation?

Uniform random sampler $\cup \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\cup \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

it is a bijection: $\binom{2 n}{n}=(n+1)\left|\mathcal{A}_{n}\right|$; the output tree is uniform
Complexity: $O(n \log n)$ random bits (initial permutation) Can be improved to $O(n)$ random bits on average

Uniform random generation?

Uniform random sampler $\cup \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

it is a bijection: $\binom{2 n}{n}=(n+1)\left|\mathcal{A}_{n}\right|$; the output tree is uniform
Complexity: $O(n \log n)$ random bits (initial permutation) Can be improved to $O(n)$ random bits on average Allows to produce huge random trees: limit is storage.

Uniform random generation?

Uniform random sampler $\cup \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

Complexity: $O(n \log n)$ random bits (initial permutation) Can be improved to $O(n)$ random bits on average Allows to produce huge random trees: limit is storage. In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms

Uniform random generation?

Uniform random sampler $\cup \mathcal{A}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

it is a bijection: $\binom{2 n}{n}=(n+1)\left|\mathcal{A}_{n}\right|$; the output tree is uniform
Complexity: $O(n \log n)$ random bits (initial permutation) Can be improved to $O(n)$ random bits on average Allows to produce huge random trees: limit is storage. In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms

Uniform random generation?

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

it is a bijection: $\binom{2 n}{n}=(n+1)\left|\mathcal{A}_{n}\right|$; the output tree is uniform
Complexity: $O(n \log n)$ random bits (initial permutation) Can be improved to $O(n)$ random bits on average Allows to produce huge random trees: limit is storage. In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms
- In silico statistical physics, bioinformatics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Uniform random sampler $\operatorname{U\mathcal {A}}(n)$: output random elements of \mathcal{A}_{n} s.t.

$$
\operatorname{Pr}(\mathrm{U} \mathcal{A}(n)=a)=\frac{1}{\left|\mathcal{A}_{n}\right|}, \text { for any } a \in \mathcal{A}_{n}
$$

it is a bijection: $\binom{2 n}{n}=(n+1)\left|\mathcal{A}_{n}\right|$; the output tree is uniform
Complexity: $O(n \log n)$ random bits (initial permutation) Can be improved to $O(n)$ random bits on average Allows to produce huge random trees: limit is storage. In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms
- In silico statistical physics, bioinformatics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Issues: complexity, genericity

In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms quality
- In silico biology or statistical physics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Issues: complexity, genericity

- Bijective sampling requires efforts and luck... such results are rare

In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms quality
- In silico biology or statistical physics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Issues: complexity, genericity

- Bijective sampling requires efforts and luck... such results are rare
- but almost anything you can count by recurrence you can generate by recursive sampling: automatic for decomposable/constructive structures
systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 10^{4}

In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms quality
- In silico biology or statistical physics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Issues: complexity, genericity

- Bijective sampling requires efforts and luck... such results are rare
- but almost anything you can count by recurrence you can generate by recursive sampling: automatic for decomposable/constructive structures
systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 10^{4}
Some possible tradeoffs: Imperfect sampling (distribution \rightarrow uniform)

In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms quality
- In silico biology or statistical physics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Issues: complexity, genericity

- Bijective sampling requires efforts and luck... such results are rare
- but almost anything you can count by recurrence you can generate by recursive sampling: automatic for decomposable/constructive structures
systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 10^{4}
Some possible tradeoffs: Imperfect sampling (distribution \rightarrow uniform)
- floating points in recursive sampling
analyzed by Denise, Zimmermann (1997)

In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms quality
- In silico biology or statistical physics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Issues: complexity, genericity

- Bijective sampling requires efforts and luck... such results are rare
- but almost anything you can count by recurrence you can generate by recursive sampling: automatic for decomposable/constructive structures
systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 10^{4}
Some possible tradeoffs: Imperfect sampling (distribution \rightarrow uniform)
- floating points in recursive sampling analyzed by Denise, Zimmermann (1997)
- simulation of Markov chains is a versatile tool but probabilists are happy when they can prove it leads to polynomial algorithms.
huge literature, see D.B. Wilson for perfect sampling

In general sampling aims at "in silico" experiments:

- Average case complexity of algorithms quality
- In silico biology or statistical physics
- In silico combinatorics and discrete probability

series parallel graph drawing

Uniform random generation?

Issues: complexity, genericity

- Bijective sampling requires efforts and luck... such results are rare
- but almost anything you can count by recurrence you can generate by recursive sampling: automatic for decomposable/constructive structures
systematized in Flajolet, Zimmermann, Van Cutsem, (1994); limited to sizes of order 10^{4}
Some possible tradeoffs: Imperfect sampling (distribution \rightarrow uniform)
- floating points in recursive sampling analyzed by Denise, Zimmermann (1997)
- simulation of Markov chains is a versatile tool but probabilists are happy when they can prove it leads to polynomial algorithms.
huge literature, see $D . B$. Wilson for perfect sampling
Relax the exact size requirement: Boltzmann sampling (see later)
In general sampling aims at "in silico" experiments:
- Average case complexity of algorithms quality
- In silico biology or statistical physics
- In silico combinatorics and discrete probability

series parallel graph drawing

My favorite random guys: maps and graphs
A planar graph G : there exists an embedding of G in the plane

My favorite random guys: maps and graphs

A planar graph G : there exists an embedding of G in the plane

A planar map M : combinatorial description of an embedding of a connected graph in the plane

label edges and give cyclic order around vertices

My favorite random guys: maps and graphs

A planar graph G : there exists an embedding of G in the plane

A planar map M : combinatorial description of an embedding of a connected graph in the plane

label edges and give cyclic order around vertices

My favorite random guys: maps and graphs

A planar graph G : there exists an embedding of G in the plane

A planar map M : combinatorial description of an embedding of a connected graph in the plane

label edges and give cyclic order around vertices

Surfaces: let \mathcal{S}_{g} be the compact orientable surface of genus g. \mathcal{S}_{0} is the sphere, \mathcal{S}_{1} the torus; in general \mathcal{S}_{g} is a "sphere" with g handles.

A graph G of genus $\leq g$: there exists a proper embedding of G in \mathcal{S}_{g}. A map of genus g : combinatorial description of a proper embedding in \mathcal{S}_{g}.
Proper $=$ Faces must be topological disks: no handle inside a face.
Euler's formula reads $v+f=e+2-2 g$.

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{I}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{I}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{I}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$
Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label $0 ;$ integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$
Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$ Euler's formula: $v+f=n+2$

Uniform random planar maps

My recurrent claim: Trees are to maps what words (codes) are to trees.
$\mathcal{T}_{n}=\{$ ordered trees with n vertices; root label 0 ; integer labels that differ at most by 1 along edges $\}$

$$
\left|\mathcal{T}_{n}\right|=3^{n} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

$\mathcal{M}_{n}=\{$ edge rooted planar maps with n edges $\}$
Euler's formula: $v+f=n+2$

Theorem: Uniform random planar maps with n edges can be generated in linear time from the closure of uniform random ordered trees.

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
cf Marc Noy's talk for its application to asymptotics.

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs)

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte. cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs)
2)

connected planar graph

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte. cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

connected planar graph $=$ edge rooted 2 -connected $\circ v$ vertex rooted connected planar graphs

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte. cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

connected planar graph $=$ edge rooted 2 -connected \circ_{v} vertex rooted connected planar graphs
3)

edge rooted 2 -connected graphs $=$
3-connected
\circ_{e} virtual edge rooted 2-connected planar graphs

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte. cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

connected planar graph $=$ edge rooted 2 -connected $\circ v$ vertex rooted connected planar graphs
3)

edge rooted 2 -connected graphs $=3$-connected σ_{e} virtual edge rooted 2-connected planar graphs
Theorem (Whitney). A 3-c planar graph has a unique embedding

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

connected planar graph $=$ edge rooted 2 -connected \circ_{v} vertex rooted connected planar graphs
3)

edge rooted 2 -connected graphs $=3$-connected σ_{e} virtual edge rooted 2-connected planar graphs
Theorem (Whitney). A 3-c planar graph has a unique embedding In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

connected planar graph $=$ edge rooted 2 -connected $\circ v$ vertex rooted connected planar graphs
3)

edge rooted 2 -connected graphs $=3$-connected \circ_{e} virtual edge rooted 2-connected planar graphs
Theorem (Whitney). A 3-c planar graph has a unique embedding In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps Then, essentially the same decomposition allows to relate planar 3-c maps to $2-\mathrm{c}$ and connected planar maps the other way round.

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
cf Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

3)

edge rooted 2 -connected graphs $=3$-connected \circ_{e} virtual edge rooted 2-connected planar graphs
Theorem (Whitney). A 3-c planar graph has a unique embedding In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps Then, essentially the same decomposition allows to relate planar 3-c maps to $2-\mathrm{c}$ and connected planar maps the other way round.

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
of Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

3)

edge rooted 2 -connected graphs $=3$-connected σ_{e} virtual edge rooted 2-connected planar graphs
Theorem (Whitney). A 3-c planar graph has a unique embedding In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps Then, essentially the same decomposition allows to relate planar 3-c maps to $2-\mathrm{c}$ and connected planar maps the other way round. Recall Recurrent Claim: planar maps can be generated from trees.

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
of Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

3)

edge rooted 2 -connected graphs $=3$-connected \circ_{e} virtual edge rooted 2-connected planar graphs
Theorem (Whitney). A 3-c planar graph has a unique embedding In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps Then, essentially the same decomposition allows to relate planar 3-c maps to $2-c$ and connected planar maps the other way round.
Recall Recurrent Claim: planar maps can be generated from trees.
One needs an easy way to perform sampling for the composition of two combinatorial structures

Decomposing planar graphs

A decomposition for planar graphs was essentially given by Tutte.
of Marc Noy's talk for its application to asymptotics.

1) planar graph $=$ set (planar connected graphs) Recall: labeled graphs
2)

3)

edge rooted 2 -connected graphs $=3$-connected \circ_{e} virtual edge rooted 2-connected planar graphs
Theorem (Whitney). A 3-c planar graph has a unique embedding In other terms: 4) 3-c planar graphs and in bijection with 3-c planar maps Then, essentially the same decomposition allows to relate planar 3-c maps to $2-c$ and connected planar maps the other way round.
Recall Recurrent Claim: planar maps can be generated from trees.
One needs an easy way to perform sampling for the composition of two combinatorial structures

Boltzmann sampling does this!

Boltzmann models, Boltzmann sampling

A combinatorial class $\mathcal{A}=\left(\mathcal{A}_{n}\right)_{n \geq 0}$
Its generating function $A(x)=\sum_{a \in A} x^{|a|}=\sum_{n}\left|\mathcal{A}_{n}\right| x^{n}$.

Boltzmann models, Boltzmann sampling

A combinatorial class $\mathcal{A}=\left(\mathcal{A}_{n}\right)_{n \geq 0}$
Its generating function $A(x)=\sum_{a \in A} x^{|a|}=\sum_{n}\left|\mathcal{A}_{n}\right| x^{n}$.
Let $x_{0}>0$ be such that $A\left(x_{0}\right)$ is finite (e.g. $x_{0}<\rho_{A}$) $\Gamma[\mathcal{A}]\left(x_{0}\right)$ is a Boltzmann generator of parameter x_{0} for \mathcal{A} if

$$
\operatorname{Pr}\left(\Gamma[\mathcal{A}]\left(x_{0}\right)=a\right)=\frac{x^{|a|}}{A(x)} \text { for all } a \in \mathcal{A} .
$$

Boltzmann models, Boltzmann sampling

A combinatorial class $\mathcal{A}=\left(\mathcal{A}_{n}\right)_{n \geq 0}$
Its generating function $A(x)=\sum_{a \in A} x^{|a|}=\sum_{n}\left|\mathcal{A}_{n}\right| x^{n}$.
Let $x_{0}>0$ be such that $A\left(x_{0}\right)$ is finite (e.g. $x_{0}<\rho_{A}$) $\Gamma[\mathcal{A}]\left(x_{0}\right)$ is a Boltzmann generator of parameter x_{0} for \mathcal{A} if

$$
\operatorname{Pr}\left(\Gamma[\mathcal{A}]\left(x_{0}\right)=a\right)=\frac{x^{|a|}}{A(x)} \text { for all } a \in \mathcal{A} .
$$

- Composite Boltzmann generators can be assembled for the sum, product and composition of combinatorial classes.
Suppose we have Boltzmann generators $\Gamma[\mathcal{A}](x)$ and $\Gamma[\mathcal{B}](x)$. Then

$$
\begin{aligned}
& \Gamma[\mathcal{A}+\mathcal{B}](x):=\operatorname{if} \operatorname{Bern}\left(\frac{A(x)}{A(x)+B(x)}\right) \text { then } \Gamma[\mathcal{A}](x) \text { else } \Gamma[\mathcal{B}](x) \\
& \Gamma[\mathcal{A} \times \mathcal{B}](x):=(\Gamma[\mathcal{A}(x)], \Gamma[\mathcal{B}(x)]) \\
& \Gamma[\mathcal{A} \circ \mathcal{B}](x):=\operatorname{let} a=\Gamma[\mathcal{A}](B(x)) \text { in }\left(a ;(\Gamma[\mathcal{B}](x))^{|a|}\right)
\end{aligned}
$$

Composition in Boltzmann sampling

$$
\Gamma[\mathcal{A} \circ \mathcal{B}](x):=\operatorname{let} a=\Gamma[\mathcal{A}](B(x)) \text { in }\left(a ;(\Gamma[\mathcal{B}](x))^{|a|}\right)
$$

Theorem: if $\Gamma[\mathcal{A}]$ and $\Gamma[\mathcal{B}]$ are Boltzmann so is $\Gamma[\mathcal{A} \circ \mathcal{B}]$.

Composition in Boltzmann sampling

$\Gamma[\mathcal{A} \circ \mathcal{B}](x):=\operatorname{let} a=\Gamma[\mathcal{A}](B(x))$ in $\left(a ;(\Gamma[\mathcal{B}](x))^{|a|}\right)$
Theorem: if $\Gamma[\mathcal{A}]$ and $\Gamma[\mathcal{B}]$ are Boltzmann so is $\Gamma[\mathcal{A} \circ \mathcal{B}]$.
Proof: Let $\gamma \in A \circ B$ with $\gamma=\left(a ; b_{1}, \ldots, b_{k}\right)$ where $a \in \mathcal{A}, k=|a|$, $b_{i} \in \mathcal{B}$ for $i=1, \ldots, k$, and $|\gamma|=\left|b_{1}\right|+\ldots+\left|b_{k}\right|$.
Then $\operatorname{Pr}(\Gamma[\mathcal{A} \circ \mathcal{B}](x)=\gamma)$

$$
\begin{aligned}
& =\operatorname{Pr}(\Gamma[\mathcal{A}]=a) \cdot \prod_{i=1}^{|a|} \operatorname{Pr}\left(\Gamma[\mathcal{B}](x)=b_{i}\right) \\
& =\frac{B(x)^{|a|}}{A(B(x))} \cdot \frac{\prod_{i} x^{\left|b_{i}\right|}}{B(x)^{|a|}}=\frac{x^{\left|b_{1}\right|+\cdots+\left|b_{k}\right|}}{A(B(x))}=\frac{x^{|\gamma|}}{(A \circ B)(x)} .
\end{aligned}
$$

Composition in Boltzmann sampling

$\Gamma[\mathcal{A} \circ \mathcal{B}](x):=\operatorname{let} a=\Gamma[\mathcal{A}](B(x))$ in $\left(a ;(\Gamma[\mathcal{B}](x))^{|a|}\right)$
Theorem: if $\Gamma[\mathcal{A}]$ and $\Gamma[\mathcal{B}]$ are Boltzmann so is $\Gamma[\mathcal{A} \circ \mathcal{B}]$.
Proof: Let $\gamma \in A \circ B$ with $\gamma=\left(a ; b_{1}, \ldots, b_{k}\right)$ where $a \in \mathcal{A}, k=|a|$, $b_{i} \in \mathcal{B}$ for $i=1, \ldots, k$, and $|\gamma|=\left|b_{1}\right|+\ldots+\left|b_{k}\right|$.
Then $\operatorname{Pr}(\Gamma[\mathcal{A} \circ \mathcal{B}](x)=\gamma)$

$$
\begin{aligned}
& =\operatorname{Pr}(\Gamma[\mathcal{A}]=a) \cdot \prod_{i=1}^{|a|} \operatorname{Pr}\left(\Gamma[\mathcal{B}](x)=b_{i}\right) \\
& =\frac{B(x)^{|a|}}{A(B(x))} \cdot \frac{\prod_{i} x^{\left|b_{i}\right|}}{B(x)^{|a|}}=\frac{x^{\left|b_{1}\right|+\cdots+\left|b_{k}\right|}}{A(B(x))}=\frac{x^{|\gamma|}}{(A \circ B)(x)} .
\end{aligned}
$$

Theorem: if $\Gamma[\mathcal{A} \circ \mathcal{B}]$ is Boltzmann then so are $\operatorname{Core}(\Gamma[\mathcal{A} \circ \mathcal{B}])$ and $\operatorname{First}(\Gamma[\mathcal{A} \circ \mathcal{B}])$, where $\operatorname{Core}(\gamma)=a$ and $\operatorname{First}(\gamma)=b_{1}$.

Uniform sampling from Boltzmann sampling

- Rejection yields uniform sampling (elements of same size have same proba) $\mathrm{U}[\mathcal{A}](n):=$ do let $a=\Gamma[\mathcal{A}](x)$ until $|a|=n$; return a;
Complexity depends on $\left|\mathcal{A}_{n}\right| \frac{x^{n}}{A(x)}$: good choice of $x=x_{n}$ and pointing.
Exact size uniform sampling can be often done in quadratic expected time and approximate size uniform sampling can be done in linear time.

Uniform sampling from Boltzmann sampling

- Rejection yields uniform sampling (elements of same size have same proba) $\mathrm{U}[\mathcal{A}](n):=$ do let $a=\Gamma[\mathcal{A}](x)$ until $|a|=n$; return a;
Complexity depends on $\left|\mathcal{A}_{n}\right| \frac{x^{n}}{A(x)}$: good choice of $x=x_{n}$ and pointing.
Exact size uniform sampling can be often done in quadratic expected time and approximate size uniform sampling can be done in linear time.
- Boltzmann in progress...

Initial model: Labelled and rigid unlabelled structures
Duchon, Flajolet, Louchard, Schaeffer (2002)
Composition, Bivariate, Unlabelled structures and Polya theory
Fusy (2006) and Flajolet, Fusy, Pivoteau (2007) and Bodirsky, Fusy, Kang and Vigerske (2007)
Efficient oracles for the evaluation of generating series

Uniform sampling from Boltzmann sampling

- Rejection yields uniform sampling (elements of same size have same proba)
$\mathrm{U}[\mathcal{A}](n):=$ do let $a=\Gamma[\mathcal{A}](x)$ until $|a|=n$; return a;
Complexity depends on $\left|\mathcal{A}_{n}\right| \frac{x^{n}}{A(x)}$: good choice of $x=x_{n}$ and pointing.
Exact size uniform sampling can be often done in quadratic expected time and approximate size uniform sampling can be done in linear time.
- Boltzmann in progress...

Initial model: Labelled and rigid unlabelled structures
Duchon, Flajolet, Louchard, Schaeffer (2002)
Composition, Bivariate, Unlabelled structures and Polya theory
Fusy (2006) and Flajolet, Fusy, Pivoteau (2007) and Bodirsky, Fusy, Kang and Vigerske (2007)
Efficient oracles for the evaluation of generating series
Pivoteau, Salvy, Soria (2008)
Applications: plane partitions, colored structures, deterministic automata, XML documents, Appolonian structures...

Bodini, Fusy, Pivoteau (2006), Bodini, Jacquot (2008), Bassino, Nicaud (2006), Bassino, David, Nicaud (2008), Darasse, Soria (2007), Darasse (2008), Bernasconi, Panagiotou, Steger, Weißt (2006)

Application to graphs: Fusy's generator

A (very rough) idea of Eric Fusy's generator for random planar graphs:

Application to graphs: Fusy's generator

A (very rough) idea of Eric Fusy's generator for random planar graphs:

- 3-connected graphs: $\Gamma[3-\mathrm{c}]:=\operatorname{Core}_{3}\left(\operatorname{Core}_{2}(\Gamma[\right.$ Planar maps $\left.])\right)$

Application to graphs: Fusy's generator

A (very rough) idea of Eric Fusy's generator for random planar graphs:

- 3-connected graphs: $\Gamma[3-\mathrm{c}]:=\operatorname{Core}_{3}\left(\operatorname{Core}_{2}(\Gamma[\right.$ Planar maps $\left.])\right)$
- 2-connected graphs:
$\Gamma[2-c]:=$ let $G_{3}=\Gamma[3 c]$ in $G_{3} \circ(\underbrace{\Gamma[2 c], \ldots, \Gamma[2 c]}_{\#\left\{\text { edges of } G_{3}\right\} \text { times }})$
- 1-connected graphs: $\Gamma[1-c]:=$ let $G_{2}=\Gamma[2 c]$ in $G_{2} \circ_{v}(\underbrace{\Gamma[1 c], \ldots, \Gamma[1 c]}_{\#\left\{\text { vertices of } G_{2}\right\}})$

Application to graphs: Fusy's generator

A (very rough) idea of Eric Fusy's generator for random planar graphs:

- 3-connected graphs: $\Gamma[3-\mathrm{c}]:=\operatorname{Core}_{3}\left(\operatorname{Core}_{2}(\Gamma[\right.$ Planar maps $\left.])\right)$
- 2-connected graphs:
$\Gamma[2-c]:=$ let $G_{3}=\Gamma[3 c]$ in $G_{3} \circ(\underbrace{\Gamma[2 c], \ldots, \Gamma[2 c]}_{\#\left\{\text { edges of } G_{3}\right\} \text { times }})$
- 1-connected graphs: $\Gamma[1-c]:=$ let $G_{2}=\Gamma[2 c]$ in $G_{2} \circ_{v}(\underbrace{\Gamma[1 c], \ldots, \Gamma[1 c]}_{\#\left\{\text { vertices of } G_{2}\right\}})$

Application to graphs: Fusy's generator

A (very rough) idea of Eric Fusy's generator for random planar graphs:

- 3-connected graphs: $\Gamma[3-c]:=\operatorname{Core}_{3}\left(\operatorname{Core}_{2}(\Gamma[\right.$ Planar maps $\left.])\right)$
- 2-connected graphs:
$\Gamma[2-c]:=$ let $G_{3}=\Gamma[3 c]$ in $G_{3} \circ(\underbrace{\Gamma[2 c], \ldots, \Gamma[2 c]}_{\#\left\{\text { edges of } G_{3}\right\} \text { times }})$
- 1-connected graphs:
$\Gamma[1-\mathrm{c}]:=$ let $G_{2}=\Gamma[2 c]$ in $G_{2} \circ_{v}(\underbrace{\Gamma[1 c], \ldots, \Gamma[1 c]}_{\#\left\{\text { vertices of } G_{2}\right\}})$
The result is a Boltzmann generator for planar graphs. Uniform sampling is obtained by rejection.

Application to graphs: Fusy's generator

A (very rough) idea of Eric Fusy's generator for random planar graphs:

- 3-connected graphs: $\Gamma[3-\mathrm{c}]:=\operatorname{Core}_{3}\left(\operatorname{Core}_{2}(\Gamma[\right.$ Planar maps $\left.])\right)$
- 2-connected graphs:

- 1-connected graphs:
$\Gamma[1-\mathrm{c}]:=$ let $G_{2}=\Gamma[2 c]$ in $G_{2} \circ_{v}(\underbrace{\Gamma[1 c], \ldots, \Gamma[1 c]}_{\#\left\{\text { vertices of } G_{2}\right\}})$
The result is a Boltzmann generator for planar graphs. Uniform sampling is obtained by rejection.

Warning: I skipt a "lot" of details (rerootings, bivariate compositions...)

Higher genus maps can be dealt with...

Higher genus maps can be dealt with...

But you'd better ask Guillaume Chapuy about that...

Higher genus maps can be dealt with...

But you'd better ask Guillaume Chapuy about that...
\begin\{advertizing\} }

Higher genus maps can be dealt with...

But you'd better ask Guillaume Chapuy about that...
\begin\{advertizing\} }
\rightarrow Hear about the almost sure giant 3-c component of genus g in maps!

Higher genus maps can be dealt with...

But you'd better ask Guillaume Chapuy about that...
\begin\{advertizing\} }
\rightarrow Hear about the almost sure giant 3-c component of genus g in maps!
\rightarrow Learn how to increase the genus bijectively by marking k-uples of vertices in trees

Higher genus maps can be dealt with...

But you'd better ask Guillaume Chapuy about that...
\begin\{advertizing\} }
\rightarrow Hear about the almost sure giant 3-c component of genus g in maps!
\rightarrow Learn how to increase the genus bijectively by marking k-uples of vertices in trees
\rightarrow Sample you very own random genus g maps

Higher genus maps can be dealt with...

But you'd better ask Guillaume Chapuy about that...
\begin\{advertizing\} }
\rightarrow Hear about the almost sure giant 3-c component of genus g in maps!
\rightarrow Learn how to increase the genus bijectively by marking k-uples of vertices in trees
\rightarrow Sample you very own random genus g maps
\rightarrow Take a try on proving our random genus g graph conjecture

Higher genus maps can be dealt with...
Boltzmann graphs wait around the corner
But you'd better ask Guillaume Chapuy about that...
\begin\{advertizing\} }
\rightarrow Hear about the almost sure giant 3-c component of genus g in maps!
\rightarrow Learn how to increase the genus bijectively by marking k-uples of vertices in trees
\rightarrow Sample you very own random genus g maps
\rightarrow Take a try on proving our random genus g graph conjecture
\end\{advertizing\} }

Higher genus maps can be dealt with...
Boltzmann graphs wait around the corner
But you'd better ask Guillaume Chapuy about that...
\begin\{advertizing\} }
\rightarrow Hear about the almost sure giant 3-c component of genus g in maps!
\rightarrow Learn how to increase the genus bijectively by marking k-uples of vertices in trees
\rightarrow Sample you very own random genus g maps
\rightarrow Take a try on proving our random genus g graph conjecture
\end\{advertizing\} }

Many thanks again to Philippe, and to the audience

Random graphs on surfaces: a conjecture (S. 2007)

Take a uniform random labelled graph X_{n} in the set of graphs of genus $\leq g$ with n vertices.

Then X_{n} a.s. has a unique 3-connected component of linear size $C\left(X_{n}\right)$, and:

- $C\left(X_{n}\right)$ is a.s. a random 3-connected graphs with minimum genus g,
- $C\left(X_{n}\right)$ a.s. has a unique embedding on \mathcal{S}_{g},
- all other components are planar and of size $O\left(n^{2 / 3}\right)$,
and X_{n} converges when n goes to infinity to "the" genus g brownian map.
and X_{n} converges when n goes to infinity to "the" genus g brownian map.

An example: Boltzmann for planar maps, via trees

Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees

Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

$$
\Gamma[\text { Seq }]=3
$$

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

$$
\Gamma[\mathrm{Seq}]=2 \mathrm{X}
$$

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees
Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

An example: Boltzmann for planar maps, via trees

Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

$$
\begin{aligned}
& \text { The generation finishes with proba } 1 \text {. } \\
& \left.\operatorname{Pr}\left(\mid \Gamma[\mathcal{A}]\left(x_{n}\right)\right) \mid=n\right)=\frac{\left|\mathcal{A}_{n}\right| \cdot x^{n}}{A(x)} \approx 4^{n} n^{-3 / 2}\left(\frac{1}{4}\left(1-\frac{1}{n}\right)\right)^{n} \approx n^{-3 / 2}
\end{aligned}
$$

An example: Boltzmann for planar maps, via trees

Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

The generation finishes with proba 1.
The probability to get size n depends on the choice of x, increasing near the singularity: if $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$

$$
\left.\operatorname{Pr}\left(\mid \Gamma[\mathcal{A}]\left(x_{n}\right)\right) \mid=n\right)=\frac{\left|\mathcal{A}_{n}\right| \cdot x^{n}}{A(x)} \approx 4^{n} n^{-3 / 2}\left(\frac{1}{4}\left(1-\frac{1}{n}\right)\right)^{n} \approx n^{-3 / 2}
$$

The expected size of a Boltzmann tree of parameter $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$ is
$\mathbb{E}\left(\left|\Gamma[\mathcal{A}]\left(x_{n}\right)\right|\right)=\frac{A\left(x_{n}\right)^{\prime}}{A\left(x_{n}\right)} \approx n^{1 / 2}$

An example: Boltzmann for planar maps, via trees

Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

The generation finishes with proba 1.
The probability to get size n depends on the choice of x, increasing near the singularity: if $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$

$$
\left.\operatorname{Pr}\left(\mid \Gamma[\mathcal{A}]\left(x_{n}\right)\right) \mid=n\right)=\frac{\left|\mathcal{A}_{n}\right| \cdot x^{n}}{A(x)} \approx 4^{n} n^{-3 / 2}\left(\frac{1}{4}\left(1-\frac{1}{n}\right)\right)^{n} \approx n^{-3 / 2}
$$

The expected size of a Boltzmann tree of parameter $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$ is $\mathbb{E}\left(\left|\Gamma[\mathcal{A}]\left(x_{n}\right)\right|\right)=\frac{A\left(x_{n}\right)^{\prime}}{A\left(x_{n}\right)} \approx n^{1 / 2} \quad$ improve complexity via pointing

An example: Boltzmann for planar maps, via trees

Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

The generation finishes with proba 1.
The probability to get size n depends on the choice of x, increasing near the singularity: if $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$

$$
\left.\operatorname{Pr}\left(\mid \Gamma[\mathcal{A}]\left(x_{n}\right)\right) \mid=n\right)=\frac{\left|\mathcal{A}_{n}\right| \cdot x^{n}}{A\left(x^{n}\right)} \approx 4^{n} n^{-\frac{3}{3} / 2}\left(\frac{1}{4}\left(1-\frac{1}{n}\right)\right)^{n} \approx n^{-3 \mathcal{\beta}_{2}}
$$

The expected size of a Boltzmann tree of parameter $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$ is $\mathbb{E}\left(\left|\Gamma[\mathcal{A}]\left(x_{n}\right)\right|\right)=\frac{A\left(x_{n}\right)^{\prime \prime}}{A\left(x_{n}\right)^{\prime}} \approx n^{1 \times 2} \quad$ improve complexity via pointing

An example: Boltzmann for planar maps, via trees

Let \mathcal{A} is the familly of ordered trees: a tree decomposes into a root and a sequence of subtrees attached by edges:

$$
\mathcal{A}=\{r\} \times \operatorname{Seq}(\{e\} \times \mathcal{A})
$$

$\Gamma[\mathcal{A}](x):=$ let $k=\mid \Gamma[$ Seq $](x A(x)) \mid$ in $\left(r ;(\{e\} \times \Gamma[\mathcal{A}](x))^{k}\right)$
where the size of a random sequence under the Boltzmann model simply follows a geometric law: $\operatorname{Pr}(|\Gamma[\mathrm{Seq}](p)|=k)=p^{k}(1-p)$.

The generation finishes with proba 1.
The probability to get size n depends on the choice of x, increasing near the singularity: if $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$

$$
\operatorname{Pr}\left(\left|\Gamma\left[\mathcal{A} \mathcal{Q}\left(x_{n}\right)\right)\right|=n\right)=\frac{\left|\mathcal{A}_{n}^{\bullet}\right| \cdot x^{n}}{A(x\rangle} \approx 4^{n} n^{-3 \times 2}\left(\frac{1}{4}\left(1-\frac{1}{n}\right)\right)^{n} \approx n^{-3\rangle 2^{1}}
$$

The expected size of a Boltzmann tree of parameter $x_{n}=\frac{1}{4}\left(1-\frac{1}{n}\right)$ is $\mathbb{E}\left(\left|\Gamma[\mathcal{A}]\left(x_{n}\right)\right|\right)=\frac{A\left(x_{n}\right)^{\prime \prime}}{A\left(x_{n}\right)^{\prime}} \approx n^{\text {右 }}$ improve complexity via pointing

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), MarckertMokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), MarckertMokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar quadrangulations converge in the large size limit to a random continuum planar map that has spherical topology.

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), MarckertMokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar quadrangulations converge in the large size limit to a random continuum planar map that has spherical topology.

In particular there exists no
separating cycle of size $\ll n^{1 / 4}$.

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), MarckertMokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar quadrangulations converge in the large size limit to a random continuum planar map that has spherical topology.

In particular there exists no
separating cycle of size $\ll n^{1 / 4}$.
The bff exploration works also for higer genus surfaces:
Theorem (Chapuy-Marcus-S. 2006) The distance between 2 random vertices of a random quad X_{n}^{g} of genus g is of order $n^{1 / 4}$.

Some properties of random discrete surfaces

This approach was pursued by Chassaing-Durhuus (2005), MarckertMokkadem (2004), Miermond (2005), Weill (2006)... culminating with

Theorem (Le Gall, 2006). Rescaled planar quadrangulations converge in the large size limit to a random continuum planar map that has spherical topology.

In particular there exists no
separating cycle of size $\ll n^{1 / 4}$.
The bff exploration works also for higer genus surfaces:
Theorem (Chapuy-Marcus-S. 2006) The distance between 2 random vertices of a random quad X_{n}^{g} of genus g is of order $n^{1 / 4}$.

Conjectures.

There is no non-contractible cycles with size $\ll n^{1 / 4}$. The rescaled continuum limit exists and has genus g.

