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Stochastic deformation of curves

Consider an oriented sample path of a planar random walk in R
2, consisting of N

steps (or links).

• Each step can have n discrete possible orientations θk = 2kπ
n , k = 0 . . . , n− 1.

• The stochastic dynamics consists in displacing one single point at a time,
without breaking the path, so that 2 links are simultaneously displaced.
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A general stochastic clock model

Construction of a continuous-time Markov chain

• Jumps are produced by independent exponential events.

• Periodic boundary conditions.

• Dynamical rules are given by a set of reactions between consecutive links
[equivalent formulation in terms of random grammar ].

With each link is associated a type, i.e. a letter of an alphabet.

J. Stat. Phys. Vol. 127, No 5, (2007)
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The set of reactions

For i ∈ [1, N ] and k ∈ [1, n], let Xk
i represent a link of type k at site i.

Define the following set of reactions.





Xk
i X

l
i+1

λkl

⇄
λlk

X l
iX

k
i+1, k = 1, . . . , n, l 6= k +

n

2
,

Xk
i X

k+n/2
i+1

γk

⇄
δk+1

Xk+1
i X

k+n/2+1
i+1 , k = 1, . . . , n.

(1)

The red equations does exist only for even n, because of the existence of folds
[two consecutive links with opposite directions], which yield a richer dynamics.

Xk
i can also be viewed as a binary random variable describing the occupation of

site i by a letter of type k. Hence, the state space of the system is represented

by the array η
def
= {Xk

i , i = 1, . . . , N ; k = 1, . . . , n}.
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Examples

(0) ASEP, the basic Asymmetric Simple Exclusion Process.

(1) The triangular lattice : ABC model [3 letter alphabet].

(2) The square lattice : a special ABCD model [4 letter alphabet]
reducible to 2 coupled ASEP.
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Example I : the ABC model (3 letter alphabet)

AB
λba

⇆
λab

BA, BC
λcb

⇆
λbc

CB, CA
λac

⇆
λca

AC,

A A

A

AA

B

B

B

B

B

A

B

C

C

C

C

C

C
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Thermodynamic limit and phase transition in the ABC model

[Evans, Kafri, Koduvely, Mukamel; Phys. Rev. E, 58 (1998)]

[Clincy, Derrida, Evans; Phys. Rev. E, 67 (2003)]

[Fayolle, Furtlehner; Math. & Comp. Science III (2004)]

[Fayolle, Furtlehner; J. Stat. Phys., Vol. 127, No 5, (2007)]

Let X = {Ai, Bi, Ci ; i = 1, . . . , N}, where Ai ∈ {0, 1}, Bi ∈ {0, 1}, Ci ∈ {0, 1},
denote binary random variables with the exclusion constraint Ai +Bi + Ci = 1.

αab def
= log

λab

λba
, αbc def

= log
λbc

λcb
, αca def

= log
λca

λac
.
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Under reversibility conditions

NA

NB
=
αbc

αca
,

NB

NC
=
αca

αab
,

NC

NA
=
αab

αbc
,

the invariant measure has the Gibbs form

π
(
X) =

1

Z
exp
[
−
∑

i<j

αabAiBj + αbcBiCj + αcaCiAj

]
.

Fundamental scaling

αbc =
α

N
+ o
( 1

N

)
, αca =

β

N
+ o
( 1

N

)
, αab =

γ

N
+ o
( 1

N

)
.
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Then, as N → ∞ with natural periodic boundary conditions, densities of particles
satisfy the following Lotka-Volterra system.





∂ρa

∂x
= ρa(βρc − γρb),

∂ρb

∂x
= ρb(γρa − αρc),

∂ρc

∂x
= ρc(αρb − βρa),

(2)

where ρu(x+ 1) = ρu(x), ∀u ∈ {a, b, c}.

Theorem 1. Let s
def
= α+ β + γ, η

def
= s

3, ρ̃a
def
= α

s , ρ̃b
def
= β

s , ρ̃c
def
= γ

s . Then
there exists a critical value

ηc
def
=

2π

3
√
ρ̃aρ̃bρ̃c

,

such that, for η > ηc, there are non-degenerate trajectories of (2) with periods
Tp = 1/p, p ∈ {1, . . . , [ η

ηc
]}. The only admissible stable sytem corresponds

– either to the trajectory associated with T1 if η > ηc ;
– or to the degenerate one (a single point) if η ≤ ηc. Movie ABC1
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Example II : Coupled exclusion in Z
2 (4 letter alphabet)

Consider a symmetric version of the ABCD model, obtained by a rotation
invariant version (ABCD −→ BCDA) with only 4 transition rates.

γ−

γ+

λ+

λ−

i
i

i
i

The 4 main parameters





λ
def
=
λ+ + λ−

2
, µ

def
=
λ+ − λ−

2
,

γ
def
=
γ+ + γ−

2
, δ

def
=
γ+ − γ−

2
.

(3)
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⇔ Reduction to 2 coupled simple exclusion processes.

Define the mapping (A,B,C,D) → (τa
i , τ

b
i ) ∈ {0, 1}2, such that





A→ (0, 0),

B → (1, 0),

C → (1, 1),

D → (0, 1).

Then Xi ∈ {A,B,C,D} → (τa
i , τ

b
i ), a couple of binary random variables.

Each elementary transition corresponds to a jump of a particule (a) or (b).
In the case γ± = λ±, the conditional rates are given by




λ±a (i) = λ++λ−

2 + λ+−λ−

2 (2τ̄ b
i − 1),

λ±b (i) = λ++λ−

2 − λ+−λ−

2 (2τ̄a
i − 1).

Philippe Flajolet’s 60th birthday, ENS Paris, December 1-2, 2008. 21



⇔ Exclusion and fluctuating interface.

(a)

(b)

In figure (a), type (a) particles evolve on a profile defined by type (b) particles.

KPZ analogous
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⇔ Fundamental scaling and phase transition phenomena.

Theorem 2. (i) Under the scaling (see notation 3)

µ(N)

λ(N)
=
η

N
+ o
( 1

N

)
,

δ(N)

γ(N)
= O

( 1

N

)
, the following thermodynamic limit holds:





∂ρa(x)

∂x
= 2ηρa(x)(1 − ρa(x))(2ρb(x) − 1),

∂ρb(x)

∂x
= −2ηρa(x)(1 − ρb(x))(2ρa(x) − 1).

(ii) Moreover, when lim
N→∞

λ(N)

N2
=
γ(N)

N2

def
= D (diffusion constant), the two

following coupled Burgers equations hold (under ad hoc initial conditions):

∂ρa

∂t
= D

∂2ρa

∂x2
− 2Dη

∂

∂x

[
ρa(1 − ρa)(2ρb − 1)

]
,

∂ρb

∂t
= D

∂2ρb

∂x2
+ 2Dη

∂

∂x

[
ρb(1 − ρb)(2ρa − 1)

]
.
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Two last silent short films (not thrillers !)

• Phases in ABCD. η is the essential parameter.

η = 0 η . 2π 2π . η . 17π η & 17π

• The non reversible ABC. Movie ABC2
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Hydrodynamic limits for exclusion processes of type (1)

Consider again an oriented path consisting of N links of equal size, with periodic
boundary conditions (e.g. closed).

• Dynamics. As in reactions (1). For an alphabet of size n = 2p+ 1, we have

AB
λab

⇄
λba

BA, a, b = 1, . . . , n, b 6= a. (4)

• Fundamental scaling. For any pair (a,b),

{
λab(N) + λba(N) = λN2 + o(N2),

λab(N) − λba(N = µabN + o(N).
(5)
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A (possibly new) method based on functional integration

Key example: the ASEP process.

Only two types of particles and the presence of a particle of type a [resp. b]
at site i is equivalent to A(N)

i (t) = 1 [resp. B(N)

i (t) = 1], with the exclusion

constraint A(N)

i (t) +B(N)

i (t) = 1.

The numbering of sites is implicitly taken modulo N , i.e. on the discrete torus

G
(N) def

= Z/NZ.

Problem: analyze, for N → ∞, the sequence of random empirical measures

µ(N)

t =
1

N

∑

i∈G(N)

A(N)

i (t)δ i
N
.

Here
{
A

(N)(t)
def
=
(
A(N)

i (t), . . . , A(N)

N (t)
)
, t ≥ 0

}
is a Markov process.
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An exponential transform

Let C̃[T ] denode the subset of functions ∈ C∞
0 ([0, 1]× [0, T−]) vanishing at t = T .

Then, choose two arbitrary functions φa, φb ∈ C̃[T ] and define the following
real-valued positive measure

Z(N)

t [φa, φb]
def
= exp

[
1

N

∑

i∈G(N)

φa

( i
N
, t
)
A(N)

i (t) + φb

( i
N
, t
)
B(N)

i (t)

]
, (6)

The scaling being as in (5, and we assume the sequence of initial empirical
measures logZ(N)

0 , taken at time t = 0, converges in probability to some
deterministic measure with a given density ρ(x, 0), so that

lim
N→∞

logZ(N)

0 =

∫ 1

0

[ρ(x, 0)φa(x, 0) + (1− ρ(x, 0))φb(x, 0)]dx, in probability.

Then, the following theorem holds.
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Theorem 3. For every t > 0, the sequence of random measures µ(N)

t converges
in probability, as N → ∞, to a deterministic measure having a density ρ(x, t)
with respect to the Lebesgue measure, which is the unique weak solution of the
Cauchy problem

∫ T

0

∫ 1

0

[
ρ(x, t)

(∂φ(x, t)

∂t
+ λ

∂2φ(x, t)

∂x2

)
− µρ(x, t)

(
1 − ρ(x, t)

)∂φ(x, t)

∂x

]
dxdt

+

∫ 1

0

ρ(x, 0)φ(x, 0)dx = 0,

for any function φ ∈ C̃[T ].

Proof. 3 Main steps.

(1) Sequential compactness.

(2) Characterization of limit points by a functional integral operator.

(3) Uniqueness. 2
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Sequential compactness.

Obtained by some classical probabilistic arguments. [See e.g. H. Spohn (LSDIP),
C. Kipnis & C. Landim (SLIPS), although for slightly different models].

Let Ω(N) denote the generator of the underlying Markov process. Using the
exponential form of Z(N)

t and a useful lemma in (SLIPS), one can easily check
that the two following random processes

U (N)

t
def
= Z(N)

t − Z(N)

0 −

∫ t

0

(
Ω(N)[Z(N)

s ] + θ(N)
s Z(N)

s

)
ds, (7)

V (N)

t
def
= (U (N)

t )2 −

∫ t

0

(
Ω(N)[(Z(N)

s )2] − 2Z(N)
s Ω(N)[Z(N)

s ]
)
ds, (8)

are bounded {F (N)

t }-martingales, with

θ(N)

t
def
=

1

N

∑

i∈G(N)

[∂φa

∂t

( i
N
, t
)
A(N)

i (t) +
∂φb

∂t

( i
N
, t
)
B(N)

i (t)
]
. (9)
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Sequential compactness (continuation)

Define the following quantities.

ψxy
def
= φx − φy = −ψyx,

∆ψxy

( i
N
, t
)

def
= ψxy

(i+ 1

N
, t
)
− ψxy

( i
N
, t
)
,

λ̃(N)
xy (i, t)

def
= λxy(N)

[
exp

(
1

N
∆ψxy

( i
N
, t
))

− 1

]
, xy = ab or ba.

Then
Ω(N)[Z(N)

t ] = L(N)

t Z(N)

t , (10)

where
L(N)

t =
∑

i∈G(N)

λ̃(N)

ab (i, t)AiBi+1 + λ̃(N)

ba (i, t)BiAi+1. (11)
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By using (11) and (10), it is straightforward to rewrite (8) in the form

V (N)

t = (U (N)

t )2 −

∫ t

0

(Z(N)
s )2R(N)

s ds, (12)

where the process R(N)

t is stricly positive and given by

R(N)

t =
∑

i∈G(N)

[λ̃(N)

ab (i, t)]2

λab(N)
AiBi+1 +

[λ̃(N)

ba (i, t)]2

λba(N)
BiAi+1.

The integral term in (12) is nothing else but the increasing process associated
with Doob’s decomposition of the submartingale (U (N)

t )2.
The following (crucial) estimates hold.




L(N)

t = O(1),

R(N)

t = O
(

1
N

)
.

(13)
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Sequential compactness (end)

Doob’s inequality for sub-martingales yields

E
[
(U (N)

t+δ − U (N)

t )2
]

= E

[∫ t+δ

t

(Z(N)
s )2R(N)

s ds

]
≤
Cδ

N
,

P

[
sup
t≤T

|U (N)

t | ≥ ǫ

]
≤

4

ǫ2
E

[∫ T

0

(Z(N)
s )2R(N)

s ds

]
≤

4CT

Nǫ2
,

where C is a positive constant depending only on φ. Hence U (N)

t → 0 in
probability as N → ∞. Then, writing

Z(N)

t+δ − Z(N)

t = U (N)

t+δ − U (N)

t +

∫ t+δ

t

(L(N)
s + θ(N)

s )Z(N)
s ds,

we can apply Aldous’s criterion, which gives a sufficient condition for the tightness
of the sequence Z(N)

t ∈ DR[0, T ] . . .
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Form of the limit points

The sequence of probability measures Q(N), defined on DM[0, T ] and
corresponding to the process µ(N)

t , is also relatively compact [classical projection
theorems for measure-valued processes (see e.g. Kallenberg)]. Let Q [resp. Zt]

the limit point of some arbitrary subsequence Q(Nk) [resp. Z
(Nk)
t ] , as Nk → ∞.

The mapping µt → supt≤T logZt is continuous and the support of Q is a set
of sample paths absolutely continuous with respect to the Lebesgue measure.
Indeed

sup
t≤T

logZt ≤

∫ 1

0

[|φa(x, t)| + |φb(x, t)|]dx,

for all ψa, ψb ∈ C
2[0, 1]. Hence, by weak convergence, any limit point Zt has the

form

Zt[φa, φb] = exp
[∫ 1

0

[ρ(x, t)φa(x, t) + (1 − ρ(x, t)φb(x, t)]dx
]
. (14)
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Toward a functional integral operator

Consider for a while the 2N quantities φa

(
i
N , t
)
, φb

(
i
N , t
)
, 1 ≤ i ≤ N , as ordinary

free variables, denoted by x(N)

i and y(N)

i respectively. Set

α(N)
xy (i, t)

def
= λab(N)

[
exp
(x(N)

i+1 − x(N)

i + y(N)

i − y(N)

i+1

N

)
− 1

]
,

α(N)
yx (i, t)

def
= λba(N)

[
exp
(y(N)

i+1 − y(N)

i + x(N)

i − x(N)

i+1

N

)
− 1

]
,

and let L(N)

t be the operator

L(N)

t [h]
def
= N2

∑

i∈G(N)

α(N)
xy (i, t)

∂2h

∂x(N)

i ∂y(N)

i+1

+ α(N)
yx (i, t)

∂2h

∂y(N)

i ∂x(N)

i+1

.
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⇔ Then Z(N)

t (see 6) satisfies the functional partial derivative equation (FPDE)

d(Z(N)

t − U (N)

t )

dt
= L(N)

t [Z(N)

t ] + θ(N)

t Z(N)

t , (15)

where θt was defined in (9). In fact, a brute force analysis of (15) would lead to
a dead end, and one must use the estimates (13).

Lemma. The following FPDE holds.

d(Z(N)

t − U (N)

t )

dt

def
= A(N)

t [Z(N)

t ] + θ(N)

t Z(N)

t + O
( 1

N

)
,

where A(N)

t is viewed as an operator with domain ∈ C∞
0 (V

(N)
) such that

A(N)

t [g]
def
=

∑

i∈G(N)

µψ′
ab

( i
N
, t
)[1

2

(
∂g

∂x(N)

i

+
∂g

∂x(N)

i+1

)
−N

∂2g

∂x(N)

i ∂x(N)

i+1

]

+ λ
∑

i∈G(N)

ψ′′
ab

( i
N
, t
) ∂g

∂x(N)

i+1

.

(16)
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Analysis of A(N)

t [g]

• Skohorod’s coupling. This allows an interim reduction to an almost sure
convergence setting on a new probability space, where Z(N)

t is rewritten as Y (N)

t ,
so that

d(Y (N)

t − U (N)

t )

dt

def
= A(N)

t [Y (N)

t ] + θ(N)

t Y (N)

t + O
( 1

N

)
, (17)

and
lim

k→∞
Y

(Nk)
t [φa, φb]

a.s.
→ Yt[φa, φb].

• Reduction, for each finite N , to a partial differential operator with constant
coefficients. For each finite N , the quantities

ψ′
ab

( i
N
, t
)
, ψ′′

ab

( i
N
, t
)
, i = 1, . . . , N,

can be viewed as constant parameters, while the x(N)

i ’s are the free variables from
a variational calculus point of view.
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• Regularization and Functional Integration

Let ~x(N) def
= (x(N)

1 , x(N)

2 , . . . , x(N)

N ), with x(N)

i = φa

(
i
N , t
)
, 1 ≤ i ≤ N . Introduce

the following family of positive test functions

χ(N)
ε (~x(N)) = ω

(∑N
i=1(x

(N)

i )2

N
− ε2

)
, ε ≥ 0, (18)

where ω ∈ C∞
0 (R) is a function of the real variable z defined by

ω(z)
def
=

{
exp
(
1
z

)
if z < 0,

0 if z ≥ 0.

For each φ ∈ C̃[T ], we have

χε([φ])
def
= lim

N→∞
χ(N)

ε (~x(N)) = ω

(∫ 1

0

φ2(x, t)dx− ε2
)
.
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The next step is to proceed by regularization on the basic equation

(
d(Y (N)

t − U (N)

t )

dt
⋆ χ(N)

ε

)
(~x(N)) =

(
Ã(N)

t [χ(N)
ε ] ⋆ Y (N)

t

)
(~x(N))

+
(
(θ(N)

t Y (N)

t ) ⋆ χ(N)
ε

)
(~x(N)) + O

( 1

N

)
.

(19)

where Ã(N)

t is the adjoint operator of A(N) defined, for any h of the form [see
equation (6)]

h = exp

[∫ 1

0

dσ(N)
a (x)U [φa(x, t)] + dσ(N)

b (x)U [φb(x, t)]

]
,

by the formula

Philippe Flajolet’s 60th birthday, ENS Paris, December 1-2, 2008. 38



Ã(N)

t [h] = −
∑

i∈G(N)

µψ′
ab

( i
N
, t
)[1

2

(
∂h

∂x(N)

i

+
∂h

∂x(N)

i+1

)
+N

∂2h

∂x(N)

i ∂x(N)

i+1

]

− λ
∑

i∈G(N)

ψ′′
ab

( i
N
, t
) ∂h

∂x(N)

i+1

,

noting that

(
A(N)

t [Y (N)

t ] ⋆ χ(N)
ε

)
(~x(N)) =

(
Ã(N)

t [χ(N)
ε ] ⋆ Y (N)

t

)
(~x(N)).
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Then, for each φ(x, t) ∈ C̃[T ], the following limit holds uniformly.

lim
N→∞

Ã(N)

t [χ(N)
ε ](~x(N)) = −

∫ 1

0

[
µψ′

ab(z, t)K([φ], z) + λψ′′
ab(z, t)H([φ], z)

]
dz,

where





H([φ], z) = 2φ(z, t)ω′

(∫ 1

0

φ2(u, t)du− ε2
)
,

K([φ], z) = H([φ], z) + 4φ2(z, t)ω′′

(∫ 1

0

φ2(u, t)du− ε2
)
.

⇔ Variational derivatives appear, as expected. . .
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The last agendum of the method is to give a rigourous meaning to integrals of
the form

lim
N→∞

∫

V(N)
f (N)(~x(N))d~x(N),

in order to to carry out functional integration by parts and variational
differentiation. This can be done in several ways via promeasures, prodistributions,
integrators Non sumus in a Terra Incognita. . .

• F. Riesz (1909) Representation theorem.

• P. J. Daniell (1919), A. N. Kolmogorov (1933).

• Y. V. Prokhorov (1956).

• N. Bourbaki (≈ 1960-1969) Promeasures

• P. Cartier & C. De Witt-Morette (Functional Integration, 2006).
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Hydrodynamic limit for multitype ASEP

Start again with the transform

Z(N)

t [φ]
def
= exp


 1

N

n∑

a=1

∑

i∈G(N)

φa

( i
N
, t
)
Ai


 .

Then, under the scaling

λab(N) = N2λ+
µab

2
N, ∀a, b ∈ {1, . . . , n},

we have
d(Z(N)

t − U (N)

t )

dt
= A(N)

t [Z(N)

t ] + θ(N)

t Z(N)

t + O
( 1

N

)
,
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where A(N)

t stands for the operator

A(N)

t [h] =

n∑

a,b=1
a6=b

∑

i∈G(N)

[
λφ′′a(

i

N
, t)

∂h

∂a(N)

i

+Nµabφ
′
a(
i

N
, t)
( ∂2h

∂a(N)

i ∂b(N)

i+1

+
∂2h

∂a(N)

i+1∂b
(N)

i

)]
,

with the notation a(N)

i
def
= φa(

i
N , t). The same tools can be applied. . .

Final remark: a functional of the form

Y (N)

t [φ]
def
= exp


 1

N

n∑

a,b=1

N∑

i=1

φab(
i

N
, t)AiBi+1




can be used to analyze the arrangement of the interfaces between particle domains
(local correlations). However, the limit process of these interfaces evolves at a
shorter time-scale [indeed by a factor N ] than the one leading to particle density.
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Apologies

The speaker would like to emphasize that this talk does not make use of
expressions like Generating Function or Functional Equation, that Philippe Flajolet
hold so dear ! For sure, Philippe’s broad-mindedness will excuse these unfortunate
oversights. . .
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