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Stochastic deformation of curves

Consider an oriented sample path of a planar random walk in R?, consisting of IV
steps (or links).

e Each step can have n discrete possible orientations 0, = %va k=0...,n—1.

e The stochastic dynamics consists in displacing one single point at a time,
without breaking the path, so that 2 links are simultaneously displaced.
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A general stochastic clock model

Construction of a continuous-time Markov chain

e Jumps are produced by independent exponential events.
e Periodic boundary conditions.

e Dynamical rules are given by a set of reactions between consecutive links
lequivalent formulation in terms of random grammar].

With each link is associated a type, i.e. a letter of an alphabet.

J. Stat. Phys. Vol. 127, No 5, (2007)
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The set of reactions

For i € [1,N] and k € [1,n], let XF represent a link of type k at site 7.

Define the following set of reactions.

( )\kl
Xkxl, = XIXF, k=1,...n z¢k+g,
lk
< S (1)
kvk+tn/2 k+1 v k+n/2+1
xkxktn/ ﬁleXm/ . k=1,...,n.
\

The red equations does exist only for even n, because of the existence of folds
[two consecutive links with opposite directions|, which yield a richer dynamics.

XF can also be viewed as a binary random variable describing the occupation of

site 7 by a letter of type k. Hence, the state space of the system is represented
def

by the array n={XFi=1,...,N;k=1,...,n}.
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Examples

(0) ASEP, the basic Asymmetric Simple Exclusion Process.
(1) The triangular lattice : ABC model [3 letter alphabet].

(2) The square lattice : a special ABCD model [4 letter alphabet]
reducible to 2 coupled ASEP.
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Example | : the ABC model (3 letter alphabet)

>\ a >\C >\ac
AB & BA,  BC S CB, CA < AC,
>‘ab >‘bc Aca
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Thermodynamic limit and phase transition in the ABC model

[Evans, Kafri, Koduvely, Mukamel; Phys. Rev. E, 58 (1998)]
Clincy, Derrida, Evans; Phys. Rev. E, 67 (2003)]

[Fayolle, Furtlehner; Math. & Comp. Science Il (2004)]
[Fayolle, Furtlehner; J. Stat. Phys., Vol. 127, No 5, (2007)]

Let X = {A@, B;,,Ci;i=1,..., N}, where A; € {0, 1}, B; € {0, 1}, C; € {0, 1},
denote binary random variables with the exclusion constraint A, + B, + () = 1.
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Under reversibility conditions

NA Oébc NB o C® NC Ckab

N5z oca’ N¢  qab’ N4 abe’

the invariant measure has the Gibbs form

1 a C ca
m(X) = - exp | — ; a®®A;B; 4+ o B,C; + o C;4;].

Fundamental scaling
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Then, as NV — oo with natural periodic boundary conditions, densities of particles
satisfy the following Lotka-Volterra system.

( apa B
O — pa(ﬁpc ’Ypb)a
dpy
_ _ 2
\ 5, = Pp(1Pa — ape), (2)
c’?pc B

where p,(x + 1) = py(x),Vu € {a, b, c}.
Theorem 1. LetsZa+8+~, n d—efg, L Eae 5 defﬁ, Pe d—ew Then

S 9
there exists a critical value
def 27T

Tle = ——
3v/DaPbbe.
such that, for n > ., there are non-degenerate trajectories of (2) with periods
=1/p,pe{l,..., [%]} The only admissible stable sytem corresponds

— either to the trajectory associated with 11 if n > n.;
— or to the degenerate one (a single point) if n < .
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Example Il : Coupled exclusion in Z? (4 letter alphabet)

Consider a symmetric version of the ABCD model, obtained by a rotation
invariant version (ABC'D — BC'DA) with only 4 transition rates.

Z 2 ;
__________ ]
( gef AT+ AT gef AT — A7
The 4 main parameters - -2 o 2 (3)
der VYT et V="
\ 2 2
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< Reduction to 2 coupled simple exclusion processes.

Define the mapping (A4, B,C, D) — (72,7°) € {0,1}2, such that

Then X; € {A, B,C, D} — (t2,7?), a couple of binary random variables.

Each elementary transition corresponds to a jump of a particule (a) or (b).

In the case v~ = A\, the conditional rates are given by

AE(i) = AT L AT AT (97b ),
Af(i) = 20 AT A 9za ),
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< Exclusion and fluctuating interface.

(@) /\
- \.\0\/

o€ e

In figure (a), type (a) particles evolve on a profile defined by type (b) particles.

KPZ analogous
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< Fundamental scaling and phase transition phenomena.

Theorem 2. (i) Under the scaling (see notation[3)

u(NY 1, (N) 1 | o |
m = + 0<N), m = O(N)’ the following thermodynamic limit holds.
[ = 20000 e ) <1,
) — (@)1~ () 2pal) ~ 1),

AN N) g -
(i) Moreover, when A}im ;\72) = ’y;vz) “ D (diffusion constant), the two

following coupled Burgers equations hold (under ad hoc initial conditions):

apa L 82IOCL a
5 = Do =200 [pa(1 - p) (29— 1)].
Opp o 0% py 0
—7 = DS 2005 (1 — py)(2p0 — 1)].
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Two last silent short films (not thrillers !)

e Phases in ABCD. n is the essential parameter.

n < 2w 2 <n < 17w n 2> 17n

e [he non reversible ABC. [Movie ABC2
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Hydrodynamic limits for exclusion processes of type (1)

Consider again an oriented path consisting of N links of equal size, with periodic
boundary conditions (e.g. closed).

e Dynamics. As in reactions ([l). For an alphabet of size n = 2p + 1, we have

Aab
AB = BA, ab=1,...,n, b#a. (4)
Aba

e Fundamental scaling. For any pair (a,b),

Aap(N) + Mpa(N) = AN?2 + o(N?),
)\ab(N> - Aba(N — ,UabN + O(N)
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A (possibly new) method based on functional integration

Key example: the ASEP process.

Only two types of particles and the presence of a particle of type a [resp. b]
at site i is equivalent to A" (t) = 1 [resp. B!™(t) = 1], with the exclusion
constraint A (t) + BV (t) = 1.

The numbering of sites is implicitly taken modulo N, i.e. on the discrete torus
G™M £ 7/NZ.

Problem: analyze, for N — oo, the sequence of random empirical measures

u = Z AN

ZEG(N

Here { A (¢) < (AN (1), ..., AY (1)), > 0} is a Markov process.

1
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An exponential transform

Let Cf[\f] denode the subset of functions € C5°(|0, 1] x [0, 7"]) vanishing at t =T..

Then, choose two arbitrary functions ¢, ¢, € C|T| and define the following
real-valued positive measure

200 0) L ew| 3 6u(10) A0+ 6(5)BV0] 0
icGV)

The scaling being as in (B, and we assume the sequence of initial empirical
measures logZ(()N), taken at time t = 0, converges in probability to some
deterministic measure with a given density p(x,0), so that

1
lim log Z,") = / p(z,0)0Pq(z,0) 4+ (1 — p(x,0))dp(x,0)]dx, in probability.
0

N —o0

Then, the following theorem holds.
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Theorem 3. For everyt > 0, the sequence of random measures ,uffN) converges
in probability, as N — oo, to a deterministic measure having a density p(x,t)
with respect to the Lebesgue measure, which is the unique weak solution of the
Cauchy problem

[ ot (P \ZE0Y a1 o, 1) 2250

1
T /O o(z,0)é(x, 0)dz = 0,

—~——

for any function ¢ € C|T].

Proof. 3 Main steps.

(1) Sequential compactness.

(2) Characterization of limit points by a functional integral operator.
(3) Uniqueness. O
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Sequential compactness.

Obtained by some classical probabilistic arguments. [See e.g. H. Spohn (LSDIP),
C. Kipnis & C. Landim (SLIPS), although for slightly different models].

Let O1Y) denote the generator of the underlying Markov process. Using the
exponential form of Z\") and a useful lemma in (SLIPS), one can easily check
that the two following random processes

t
UL € g g0 / ([ 2] + 900 Z0M) s, (7)
0
t
Vt(N) def (Ut(N))Z_/ (Q(N)[(ZéN))Q]—2Z§N)Q(N)[Z§N)])d8, (8)
0

are bounded {F"}-martingales, with

pi %gm [P (L 0)a®) + (1) BOw].(©)
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Sequential compactness (continuation)

Define the following quantities.

Z = br = by =y
Sinn(pt) = o(50) v (30)

N . def 1 )
A (i,1) = Agy(N) [exp (NA@DW (N’t)) — 1] , xy = ab or ba.

Then
QM[ZN) = L 7", (10)
where N N
L = > A0, ) AiBigy + Ay (i, ) Bi A1, (11)
ieGV)
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By using (L1)) and (I0Q), it is straightforward to rewrite (8) in the form

t
V= U - [ (2R ds (12)
0

where the process RiN) is stricly positive and given by

X, o) R, 1)
R(N) _ [ ab \ A, B; + ba \“ B;A; 1.
t iE;N) Aab(N) - Ava(N) "

The integral term in (I2)) is nothing else but the increasing process associated
with Doob’s decomposition of the submartingale (U")2.
The following (crucial) estimates hold.

13
RV =0(3) N

oooooooooo
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Sequential compactness (end)

Doob’s inequality for sub-martingales yields

t+9d o)
(U -UYP) = B[ @rRyas| <5
t
() 4 g (N)\2 p(N) 4CT
P f;lg\Ut | >€] < e_2E 0 (ZV) R ds | < N

where C' is a positive constant depending only on ¢. Hence Ut(N) — 0 in
probability as N — oco. Then, writing

t+0
20020 = UG - U+ [ (L + ) 20ds
t

we can apply Aldous’s criterion, which gives a sufficient condition for the tightness
of the sequence Z\") € D[0,T]...

W INRIA  Philippe Flajolet's 60th birthday, ENS Paris, December 1-2, 2008. 32



Form of the limit points

The sequence of probability measures QY), defined on Dx0,T] and
corresponding to the process uiN), is also relatively compact [classical projection
theorems for measure-valued processes (see e.g. Kallenberg)] Let Q [resp. Zi]
the limit point of some arbitrary subsequence Q™) [resp. Z ] as N, — oo.
The mapping p; — sup,«rlog Z; is continuous and the support of () is a set
of sample paths absolutely continuous with respect to the Lebesgue measure.
Indeed

1
suplog Z; < / 16a(z, )] + |é0(, )1 da,
t<T 0

for all ¥,, 1, € C?[0,1]. Hence, by weak convergence, any limit point Z; has the

form

Zi|da, Op] = exp {/o p(x,t)pa(x,t) + (1 — p(x,t)pp(x, t)|dz|. (14)

77 INRIA  Philippe Flajolet's 60th birthday, ENS Paris, December 1-2, 2008. 33



Toward a functional integral operator

Consider for a while the 2N quantities ¢, (%, t),gbb(%, t), 1 <1< N, as ordinary
free variables, denoted by a:,(L-N) and ygN) respectively. Set

(N) () (N) (N)
e X, +
al(it) AN [exp(~HH T E ) ]

(N) _  (N) (N) (N) i
e —+ ZU — X

and let £\ be the operator

[,(N) def N2 Z (N) t @2h 4 (N)(- t) 82
t Ay 7/ (9 (N)a (N) RS (9 N)é’ (N) -~
i€ GN) Ly OYita Lit1
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< Then Z\" (see [6) satisfies the functional partial derivative equation (FPDE)

1z U

U)oz + 00z (15

where 6, was defined in (). In fact, a brute force analysis of (15) would lead to
a dead end, and one must use the estimates ([13)).

Lemma. The following FPDE holds.

(2"~ U™)
dt

1
(N)[r7(N) (N) rz(N)
AN ZN] 4 i) 7 +O<N),

L : : N
where A" is viewed as an operator with domain € CSO(V( )) such that

. ' 1/ Og dg 0%g
AN g & g / i, t _( + ) - N
t [9] /“%b (N ) 9 &Ugm 8557(,]4\[-)1 P (N)&Bg)l

icGV)

A Yy (Z )aj&

icGWN)
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Analysis of A!"[g]

e Skohorod's coupling. This allows an interim reduction to an almost sure
convergence setting on a new probability space, where Z,gN) IS rewritten as Y;(N),

so that (N) )
d(Y —U e 1
( t . t ) def 17(5N)th(z\f)] 9(§N)}ft(N) + O(_N>7 (17)

and N
lim YV, [, ] L3 Yi[da, o).

k— o0
e Reduction, for each finite N, to a partial differential operator with constant

coefficients. For each finite NV, the quantities

w;b(%7t)7 wgb(%7t)7 /L: ]‘7"'7N7

)

. . N), .
can be viewed as constant parameters, while the :c,(L s are the free variables from

a variational calculus point of view.
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e Regularization and Functional Integration

Let 7V & (2,25, 20, with 2 = gba(%,t)l < 4 < N. Introduce
the following family of positive test functions
N (N)\2
XéN)(f(N)) — w(Zz-lj(\[ ) ) o €2>’ 5 2 O, (18)

where w € C§°(R) is a function of the real variable z defined by
def exp(%) it 2 <0,
w(z) =
0if z > 0.

—_—~——

For each ¢ € C[T], we have

Xe([¢]) & lim M (@E™) = w (/01 o> (z, t)dx — 52> .

N —o0
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The next step is to proceed by regularization on the basic equation

(V) (V)
(d(Yt d; U;™) *X;(-;N)> (_f(N)) :(j§N> [X(S:N)} *Yt(N)> (f(z\r))

(19)

(O ) @) + 0 )

where A™) is the adjoint operator of A™) defined, for any h of the form [see
equation ()]

h = exp [/0 do™N(2)U[pqa(x,t)] + dO’I()N)(QZ)U[be(CE,t)]] ,

by the formula
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— , 1/ 0Oh Oh 0°h
Ay lh] = — Z Mw“(ﬁ’t) [5(833(.]\[) - Ox'" —I_N@a:(-N)@:C

7/€C4(N) 1+1
(0 Oh
— A Z wab _’t ax(N) ’
icG) i+l

noting that

(N)
i+1

|
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——~——

Then, for each ¢(z,t) € C[T], the following limit holds uniformly.

lim A [yl ]@WWZ—L[M%mxmww 2) + M (= O H (], 2)] .

N —oo

where

s 1
fﬂ¢;a:2m%ww(/Uﬁutdu—£)
\

K ([6),2) = H((6],2) + 46 (2, ) (/¢utmfe)

< Variational derivatives appear, as expected. . .

77 INRIA  Philippe Flajolet's 60th birthday, ENS Paris, December 1-2, 2008. 40



The last agendum of the method is to give a rigourous meaning to integrals of
the form

lim (V) (FN)) g7

in order to to carry out functional integration by parts and variational

differentiation. This can be done in several ways via promeasures, prodistributions,
Integrators Non sumus in a Terra Incognita. . .

e F. Riesz (1909) Representation theorem.

e P. J. Daniell (1919), A. N. Kolmogorov (1933).
e Y. V. Prokhorov (1956).

e N. Bourbaki (=~ 1960-1969) Promeasures

e P. Cartier & C. De Witt-Morette ( Functional Integration, 2006).
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Hydrodynamic limit for multitype ASEP

Start again with the transform

Ny de 1 ¢ '
Z:V[¢] = exp NZ Z ¢a(%at)Ai

Then, under the scaling

Aap(N) = N2\ + %N, Ya,be {1,...,n},

we have
d(z;") — U™)

dt

1
)

= AL+ 07+ O
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where A" stands for the operator

= ' 5%h 5%h
Z Z [)\(b N)+ ,LLab¢ (_ t)(a ale 8a§ﬁ>18b§m>]’

a,b=1
aoth icGN

with the notation a,(L-N) = (ba(%,t). The same tools can be applied. . .

Final remark: a functional of the form

Y, Vo] d=efexp — Z Z%b t)A;Bi1

ab 1:=1

can be used to analyze the arrangement of the interfaces between particle domains
(local correlations). However, the limit process of these interfaces evolves at a
shorter time-scale [indeed by a factor N] than the one leading to particle density.
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Apologies

The speaker would like to emphasize that this talk does not make use of
expressions like Generating Function or Functional Equation, that Philippe Flajolet
hold so dear! For sure, Philippe's broad-mindedness will excuse these unfortunate
oversights. . .
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